• Title/Summary/Keyword: 분리(separation)

Search Result 4,361, Processing Time 0.023 seconds

A Study of Interpretation of Separation Behavior in Gas Expansion Separation(GES) Bolt (가스팽창분리형 볼트 분리거동 해석 연구)

  • Lee Young Jo
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.9 no.1
    • /
    • pp.27-34
    • /
    • 2005
  • The present work has been developed the study of interpretation of separation behavior in gas expansion separation(GES) bolt which has the separation characteristics without fragmentation and minimum pyre-shock during the operation of the explosive bolt. In order to obtain the performance of minimum pyre-shock, the present work used non-compressive material instead of separation explosives. The use of the interpretation processor could be extensively helped to design the shape and the amount of explosives in the explosive bolt having complex geometry, and to analyse the separation behavior during the operation. It is also proved that the GES bolt is the most suitable the separation system necessary to minimum pyre-shock and non fragmentation compare with others.

Recent advances on Oil-water Separation Technology (유수분리 기술의 최신 동향)

  • Hong Ryul Park;Woonbong Hwang;Dukhyun Choi
    • Composites Research
    • /
    • v.36 no.2
    • /
    • pp.69-79
    • /
    • 2023
  • Oil-water separation is a critical process for several industrial applications, including oil production, wastewater treatment, food processing, and environmental area such as marine oil spills. The separation efficiency of oil-water mixtures can be influenced by various factors such as mixture composition, oil and water conditions, and the separation technology used. Over the years, various technologies have been developed to separate water and oil by physical, chemical and biological methods. This paper presents an overview of the various methods and technologies available for oil-water separation, including gravity separation, centrifugal separation, and separation using adsorbents, filters. The strengths and limitations of each method are discussed, along with recent research trends and future prospects. Furthermore, this paper aims to provide direction for future research and industrial application of sustainable and environmentally friendly oil-water separation technologies. In conclusion, we provide a comprehensive overview of recent oil-water separation technologies that will be beneficial to researchers and industrialists in the field of oil-water separation.

The Study of the Characteristic of Pyrotechnic Separation Devices Using Missile System and Space Craft (우주발사체 및 미사일 시스템에 이용되는 파이로테크닉 분리장치의 특성에 관한 연구)

  • Lee, Yeung-Jo;Kim, Dong-Jin
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2007.04a
    • /
    • pp.208-211
    • /
    • 2007
  • Separation Devices have two functions. These two functions are to bond and to separate two bodies. This paper is about separation devices which use explosives to separate their bodies. Explosive bolt is separated with two bodies when the explosives in the body detonated. The good things of explosive bolt are that it has simple operational system and it is made of few parts. But it has side effects; fragment and pyre-shock. To avoid these side effects gas expansion separation(GES) bolt and pressure cartridge actuation separation(PAS) devices are invented. These use pressure to separate their bodies. The pressure is generated when explosives are burned. But the sizes of PAS devices are bigger than explosive bolts. And GES bolt has a mechanically lower bonding ability than that of explosive bolt. When you design separation devices, it is recommended to know operational system and characteristics of separation devices, to design best one.

  • PDF

Shape Memory Alloy Actuator and Spiral Spring Based Separation Actuator for Small Satellite (형상기억합금구동기와 태엽스프링을 이용한 소형위성용 분리장치)

  • Lee, Min-Hyoung;Son, Jae-Hwang;Kim, Young-Woong;Kim, Byung-Kyu
    • Journal of the Korean Society for Aviation and Aeronautics
    • /
    • v.19 no.3
    • /
    • pp.10-15
    • /
    • 2011
  • The separation actuator for the small satellite should fix satellite appendages with high clamping force. After operation, it has to be separated from the satellite body without any damage on satellite system and release the appendages such as a solar panel and an antenna successfully. Therefore, we invent a non-explosive separation actuator for the small satellite which generates low shock and is resettable. In order to confirm performance of the proposed separation actuator, we carried out experiments for separation time, maximum preload for activation, and shock level.

Stage Separation Analysis of Launch Vehicle Using Monte Carlo Simulation (몬테카를로 시뮬레이션을 이용한 발사체 단 분리 운동 분석)

  • Oh, Choong-Seok;Sun, Byung-Chan;Park, Yong-Kyu;Roh, Woong-Rae
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.43 no.4
    • /
    • pp.341-348
    • /
    • 2015
  • This paper addresses Monte-Carlo simulation analyses for the stage separation of the general launch vehicle. The stage separation event of the launch vehicle occurs during a very short time and is related with many dynamic parameters. The stage separation is a critical event in that the launch fails if there is a collision during the stage separation. The stage separation analyses was conducted for the general launch vehicle to confirm the separation without collision within the designed clearance in case of the random input parameters. This paper presents the stochastic results of the stage separation of the launch vehicle using the Monte-Carlo simulation.

Development of Solid Separator for Selective Solid Circulation in Two-interconnected Fluidized Beds System (2탑 유동층 시스템에서 선택적 고체순환을 위한 고체분리기 개발)

  • Ryu, Ho-Jung;Park, Young Cheol;Lee, Seung-Yong;Kim, Hong-Ki
    • Korean Chemical Engineering Research
    • /
    • v.47 no.2
    • /
    • pp.195-202
    • /
    • 2009
  • As a basic research of developing two-interconnected fluidized beds system for selective solid circulation, a solid separator was developed to separate fine and coarse particles by means of particle size difference with particle size separation system equipped with metal screen. The effects of gas velocity, height of solid separator, and separation area on the solid separation rate were investigated as well. The solid separation rate increased as the gas velocity, height of solid separator, and separation area increased. As the gas velocity and height of the solid separator increased, the variation of the solid separation rate was consistent with that of bubble size. Consequently, coarse($212{\sim}300{\mu}m$) and fine($63{\sim}106{\mu}m$) particles were separated using the solid separator and the solid separation rate was ranged from 4.4 to 127 g/min. We also proposed two interconnenced fluidized beds system for sorption enhanced water-gas shift process equipped with the developed solid separator.

PASEM을 이용한 KSR-III Nose Fairing 분리운동 예측

  • Ok, Ho-Nam;Kim, In-Sun;Ra, Sung-Ho;Kim, Seong-Lyong;Oh, Beom-Suk
    • Aerospace Engineering and Technology
    • /
    • v.2 no.1
    • /
    • pp.171-181
    • /
    • 2003
  • The nose fairings of KSR-III are designed to be separated from the rocket by explosive force at the mission altitude to expose the payload. Adequate amount of separation force should be imposed to allow safe separation without collision between the fairings and the rocket, and the separation device was designed for the separation at very high altitude where almost no air load was expected. As the development of KSR-III goes on, several design changes have made and lower separation altitude of 45km is expected as a result. Under these circumstances, it is required to determine if the nose fairings can be separated without collision with much severer air load than for the design condition. In this study, the 6-DOF motion analysis program, PASEM, which was developed to predict the strap-on booster separation, is modified to simulate the pivotal motion of the fairings at early stages of separation. The accuracy of pivot motion simulation is validated by comparison with the results of ground test and the accurate separation conditions are deduced from it. Trajectory simulations are performed to see if separation without collision is possible with varying angle of attack, direction of gravity, and the effect of gust. It is also found that reducing the separation angle of the clamshell hinge from 60 degrees to 40 degrees can enhance separation safety and separation at lower altitude of 40km can be done without collision.

  • PDF

Membrane Technologies in Biotechnology (생물공학에서의 막분리기술)

  • 구윤모
    • Membrane Journal
    • /
    • v.8 no.2
    • /
    • pp.69-76
    • /
    • 1998
  • Membrane technologies have been used frequently in industries, taking advantage of that it is energy-saving and employable in relatively large scale. The fact that a non-mass separating agent is used in mild conditions without phase change in membrane separation makes it a method of choice in the recovery of biological materials. Recently, the development of noble separating modules has been solving the inherent problems in membrane separation, the fouling and the concentration polarization. In addition, membrane separation has broadened its applications from the conventional crude separation to the purificational use by the advent of the new and functional membrane materials. The role of membrane technologies is expected to be enormous in the production and recovery of biological products, considering the excellent applicability of membrane in the fields of integrated separation and in-situ separation, the two trends in modem bioseparation.

  • PDF

Research Trends of Metal-Organic Framework Membranes: Fabrication Methods and Gas Separation Applications (MOF 분리막의 연구 동향: 합성 방법 및 기체 분리 응용)

  • Lee, Jeong Hee;Kim, Jinsoo
    • Membrane Journal
    • /
    • v.25 no.6
    • /
    • pp.465-477
    • /
    • 2015
  • Recently membrane-based gas separation has attracted a lot of attention due to the growing demands on energy efficient separation processes. Current membrane-based gas separation is dominant by polymer membranes and limited mostly to non-condensable gases rather than condensable gases such as hydrocarbon isomers due to the limitation s of polymer materials. Metal-organic framework (MOF) materials, consisting of metal ions and organic ligands, have received a tremendous attention as membrane materials due to high surface area, controllable pore structure, and functionality. In this review, we provide a recent development of MOF membrane preparation methods and their gas separation applications.

Gas Separation Properties and Their Applications of High Permeable Amorphous Perfluoropolymer Membranes (고투과성 무정형 불소고분자 불리막의 기체분리 특성 및 응용)

  • Freeman, Benny D.;Park, Ho-Bum
    • Membrane Journal
    • /
    • v.17 no.2
    • /
    • pp.81-92
    • /
    • 2007
  • Membrane-based separation processes are receiving increasing attention in the scientific community and industry since they provide a desirable alternative to processes that are not easy to achieve by conventional separation technologies. In particular, gas separation using polymeric membranes have annually grown so fast owing to advantages such as easy installation, no moving parts, small footprint and low energy process. The key element is definitely a polymer membrane exhibiting high permeability and high selectivity to compete with other gas separation technologies. Current polymer membranes used for commercial gas separation are a family of hydrocarbon polymers for hydrogen separation, air separation and carbon dioxide separation from natural gas sweetening. Relatively, gas or vapor separation properties of fluoropolymers are not known so much as compared with those of hydrocarbon polymers. Accordingly, in this study, membranes prepared from amorphous perfluoropolymers are of particular interest because of the unique properties of these polymers. The advantages offered by these amorphous perfluoropolymers for use in gas and vapor separation will be discussed. In addition, membrane properties and separation performance will be compared with other membranes available on the market.