• 제목/요약/키워드: 분류 코드

검색결과 613건 처리시간 0.037초

멀티모달 기반 악성코드 유사도 계산 기법 (Multi-Modal Based Malware Similarity Estimation Method)

  • 유정도;김태규;김인성;김휘강
    • 정보보호학회논문지
    • /
    • 제29권2호
    • /
    • pp.347-363
    • /
    • 2019
  • 사람의 DNA가 변하지 않는 것과 같이 사이버상의 악성코드도 변하지 않는 고유의 행위 특징을 갖고 있다. APT(Advanced Persistent Threat) 공격에 대한 방어수단을 사전에 확보하기 위해서는 악성코드의 악성 행위 특징을 추출해야 한다. 이를 위해서는 먼저 악성코드 간의 유사도를 계산하여 유사한 악성코드끼리 분류할 수 있어야 한다. 본 논문에서는 Windows OS 상에서 동작하는 악성코드 간의 유사도 계산 방법으로 'TF-IDF 코사인 유사도', 'Nilsimsa 유사도', '악성코드 기능 유사도', 'Jaccard 유사도'를 사용해 악성코드의 유형을 예측해보고, 그 결과를 보인다. 실험결과, 유사도 계산 방식마다 악성코드 유형에 따라 예측률의 차이가 매우 컸음을 발견할 수 있었다. 모든 결과에 월등한 정확도를 보인 유사도는 존재하지 않았으나, 본 실험결과를 이용하여 특정 패밀리의 악성코드를 분류할 때 어떤 유사도 계산 방식을 활용하는 것이 상대적으로 유리할지를 결정할 때 도움이 될 것으로 판단된다.

딥러닝 기법을 활용한 산업/직업 자동코딩 시스템 (An Automated Industry and Occupation Coding System using Deep Learning)

  • 임정우;문현석;이찬희;우찬균;임희석
    • 한국융합학회논문지
    • /
    • 제12권4호
    • /
    • pp.23-30
    • /
    • 2021
  • 본 산업/직업 자동코딩 시스템은 조사 대상자들이 응답한 방대한 양의 산업/직업을 설명하는 자연어 데이터에 통계 분류 코드를 자동으로 부여하는 시스템이다. 본 연구는 기존의 정보검색 기반의 산업/직업 자동코딩시스템과 다르게 딥러닝을 이용하여 색인 DB가 필요하지 않고 분류 수준에 상관없이 코드를 부여할 수 있는 시스템을 제안한다. 또한, 자연어 처리에 특화된 딥러닝 기법인 KoBERT를 적용한 제안 모델은 인구주택총조사 산업/직업 코드 분류, 그리고 사업체기초조사 산업 코드 분류에서 각각 95.65%, 91.45%, 97.66%의 Top 10 정확도를 보인다. 제안한 모델 실험 후 향후 개선 가능성을 데이터/모델링 관점으로 분석한다.

SVM 기반 유전 알고리즘을 이용한 컴파일러 분석 프레임워크 : 특징 및 모델 선택 민감성 (Compiler Analysis Framework Using SVM-Based Genetic Algorithm : Feature and Model Selection Sensitivity)

  • 황철훈;신건윤;김동욱;한명묵
    • 정보보호학회논문지
    • /
    • 제30권4호
    • /
    • pp.537-544
    • /
    • 2020
  • 악성코드 기술 발전으로 변이, 난독화 등의 탐지 회피 방법이 고도화되고 있다. 이에 악성코드 탐지 기술에 있어 알려지지 않은 악성코드 탐지 기술이 중요하며, 배포된 악성코드를 통해 저자를 식별하여 알려지지 않은 악성코드를 탐지하는 악성코드 저자 식별 방법이 연구되고 있다. 본 논문에서는 바이너리 기반 저자 식별 방법에 대해 중요 정보인 컴파일러 정보를 추출하고자 하였으며, 연구 간에 특징 선택, 확률 및 비확률 모델, 최적화가 분류 효율성에 미치는 민감성(Sensitive)을 확인하고자 하였다. 실험에서 정보 이득을 통한 특징 선택 방법과 비확률 모델인 서포트 벡터 머신이 높은 효율성을 보였다. 최적화 연구 간에 제안하는 프레임워크를 통한 특징 선택 및 모델 최적화를 통해 높은 분류 정확도를 얻었으며, 최대 48%의 특징 감소 및 51배가량의 빠른 실행 속도라는 결과를 보였다. 본 연구를 통해 특징 선택 및 모델 최적화 방법이 분류 효율성에 미치는 민감성에 대해 확인할 수 있었다.

SVM을 활용한 악성 웹 페이지 분류 (Classification of Malicious Web Pages by Using SVM)

  • 황영섭;문재찬;조성제
    • 한국컴퓨터정보학회논문지
    • /
    • 제17권3호
    • /
    • pp.77-83
    • /
    • 2012
  • 웹 페이지에서 다양한 서비스를 제공하면서 악성코드가 웹 페이지를 통해 배포되는 것도 늘어났다. 악성코드는 개인정보 유출, 시스템의 성능저하, 시스템의 좀비 피씨화 등의 피해를 입힌다. 이런 피해를 막으려면 악성코드가 있는 웹 페이지의 접근을 막아야 한다. 그런데 웹 페이지에 있는 악성코드는 난독화나 변형기법으로 위장하고 있어 기존 안티바이러스 소프트웨어가 사용하는 시그니처 방식의 접근법으로 찾아내기 어렵다. 이를 해결하기 위하여, 웹 페이지를 분석하여 악성 웹 페이지와 양성 웹 페이지를 구별하기 위한 특징을 추출하고, 기계 학습법으로 널리 사용되는 SVM을 통하여 악성 웹 페이지를 분류하는 방법을 제안한다. 제안하는 방법이 우수함을 실험을 통하여 보인다. 제안한 방법으로 악성 웹 페이지를 정확히 분류하면 웹 페이지를 통한악성코드의 배포를 막는데 이바지할 것이다.

하이브리드 데이터셋을 이용한 악성코드 패밀리 분류 (Classification of Malware Families Using Hybrid Datasets)

  • 최서우;한명진;이연지;이일구
    • 정보보호학회논문지
    • /
    • 제33권6호
    • /
    • pp.1067-1076
    • /
    • 2023
  • 최근 변종 악성코드가 증가하면서 사이버 해킹 침해사고 규모가 확대되고 있다. 그리고 지능형 사이버 해킹 공격에 대응하기 위해 악성코드 패밀리를 효과적으로 분류하기 위한 기계학습 기반 연구가 활발히 진행되고 있다. 그러나 기존의 분류 모델은 데이터셋이 난독화되거나, 희소한 경우에 성능이 저하되는 문제가 있었다. 본 논문에서는 ASM 파일과 BYTES 파일에서 추출한 특징을 결합한 하이브리드 데이터셋을 제안하고, FNN을 사용하여 분류 성능을 평가한다. 실험 결과에 따르면 제안하는 방법은 단일 데이터셋에 비해 약 4% 향상된 성능을 보였으며, 특히 희소한 패밀리에 대해서는 약 30%의 성능 향상을 보였다.

타임드 오토마타 모델로부터 체계적인 VxWorks 기반 코드 생성 (Systematic VxWorks-based Code Generation from Timed Automata Model)

  • 최진호;지은경;배두환
    • 한국정보과학회:학술대회논문집
    • /
    • 한국정보과학회 2012년도 한국컴퓨터종합학술대회논문집 Vol.39 No.1(B)
    • /
    • pp.138-140
    • /
    • 2012
  • 타임드 오토마타 모델 기반 개발 방법을 지원하는 TIMES 도구는 실시간 소프트웨어에 대한 타임드 오토마타 모델 명세, 시뮬레이션, 검증, BrickOS 기반 코드 생성을 지원한다. 하지만 BrickOS 기반 코드는 엄격한 실시간 제약성 만족을 지원하지 않아서 실시간 내장형 소프트웨어 개발에 그대로 사용하기가 어렵다. 본 논문에서는 타임드 오토마타 모델로부터 실시간 내장형 소프트웨어 구현에 사용될 수 있는 VxWorks 기반 코드를 체계적으로 생성하기 위한 방법을 제안한다. TIMES 도구를 사용해 자동 생성된 BrickOS 기반 코드에서 플랫폼 독립적인 코드는 활용하고, 플랫폼 의존적인 코드들을 분류해 내어 각각 VxWorks 기반 코드로 변환하는 방법을 제안한다. 내장형 소프트웨어 개발시 타임드 오토마타 모델 기반 개발 방법의 적용 가능성을 확인하기 위해 변환 항목들을 통해 생성된 VxWorks 기반 코드에 대한 테스트를 수행하고 결과를 분석한다.

IoT 악성코드 분석을 위한 op 코드 카테고리 시퀀스 특징과 기계학습 알고리즘 활용 (Opcode category sequence feature and machine learning for analyzing IoT malware)

  • 문성현;김영호;김동훈;황두성
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2021년도 추계학술발표대회
    • /
    • pp.914-917
    • /
    • 2021
  • IoT 기기는 취약한 아이디와 비밀번호 사용, 저사양 하드웨어 등 보안 취약점으로 인해 사이버 공격 진입점으로 이용되고 있다. 본 논문은 IoT 악성코드를 탐지하기 위한 op 코드 카테고리 기반 특징 표현을 제안한다. Op 코드의 기능별 분류 정보를 이용해서 n-gram 특징과 엔트로피 히스토그램 특징을 추출하고 IoT 악성코드 탐지를 위한 기계학습 모델 평가를 수행한다. IoT 악성코드는 기능 개선과 추가를 통해 진화하였으나 기계학습 모델은 훈련 데이터에 포함되지 않은 진화된 IoT 악성 코드에 대한 예측 성능이 우수하였다. 또한 특징 시각화를 이용해서 악성코드의 비교 탐지가 가능하다.

딥러닝 기반 파일리스 악성코드 탐지 기법의 연구 (A Study on Detecting Fileless Malware Using Deep Learning)

  • 채승언;김봉현;이차규;최선오
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2020년도 추계학술발표대회
    • /
    • pp.366-369
    • /
    • 2020
  • 기존 악성코드 탐지 방법의 한계점과 심층 학습기술의 적용을 통한 악성코드의 탐지 및 분류방법을 기술하고 탐지에서의 각 학습모델에 대한 테스트 성능 과정 정확도를 비교하여 파일리스 악성코드 탐지에서의 심층 학습기술의 유용성과 발전 가능성을 판단하려 한다.

N-gram Opcode를 활용한 머신러닝 기반의 분석 방지 보호 기법 탐지 방안 연구 (A Study on Machine Learning Based Anti-Analysis Technique Detection Using N-gram Opcode)

  • 김희연;이동훈
    • 정보보호학회논문지
    • /
    • 제32권2호
    • /
    • pp.181-192
    • /
    • 2022
  • 신종 악성코드의 등장은 기존 시그니처 기반의 악성코드 탐지 기법들을 무력화시키며 여러 분석 방지 보호 기법들을 활용하여 분석가들의 분석을 어렵게 하고 있다. 시그니처 기반의 기존 연구는 악성코드 제작자가 쉽게 우회할 수 있는 한계점을 지닌다. 따라서 본 연구에서는 악성코드 자체의 특성이 아닌, 악성코드에 적용될 수 있는 패커의 특성을 활용하여, 단시간 내에 악성코드에 적용된 패커의 분석 방지 보호 기법을 탐지하고 분류해낼 수 있는 머신러닝 모델을 구축하고자 한다. 본 연구에서는 패커의 분석 방지 보호 기법을 적용한 악성코드 바이너리를 대상으로 n-gram opcode를 추출하여 TF-IDF를 활용함으로써 피처(feature)를 추출하고 이를 통해 각 분석 방지 보호 기법을 탐지하고 분류해내는 머신러닝 모델 구축 방법을 제안한다. 본 연구에서는 실제 악성코드를 대상으로 악성코드 패킹에 많이 사용되는 상용 패커인 Themida와 VMProtect로 각각 분석 방지 보호 기법을 적용시켜 데이터셋을 구축한 뒤, 6개의 머신러닝 모델로 실험을 진행하였고, Themida에 대해서는 81.25%의 정확도를, VMProtect에 대해서는 95.65%의 정확도를 보여주는 최적의 모델을 구축하였다.

GAN 기반의 악성코드 이미지 데이터 증강 분석 (Analysis of Malware Image Data Augmentation based on GAN)

  • 이원준;강창훈;강아름
    • 한국컴퓨터정보학회:학술대회논문집
    • /
    • 한국컴퓨터정보학회 2024년도 제69차 동계학술대회논문집 32권1호
    • /
    • pp.99-100
    • /
    • 2024
  • 다양한 변종들의 존재와 잘 알려지지 않은 취약점을 이용한 공격은 악성코드 수집을 어렵게 하는 요인들이다. 부족한 악성코드 수를 보완하고자 생성 모델을 활용한 이미지 기반의 악성코드 데이터를 증강한 연구들도 존재하였다. 하지만 생성 모델이 실제 악성코드를 생성할 수 있는지에 대한 분석은 진행되지 않았다. 본 연구는 VGG-11 모델을 활용해 실제 악성코드와 생성된 악성코드 이미지의 이진 분류하였다. 실험 결과 VGG-11 모델은 99.9%의 정확도로 두 영상을 다르게 판단한다

  • PDF