• Title/Summary/Keyword: 분류 시스템

Search Result 6,503, Processing Time 0.031 seconds

Automatic Document Classification Using Multiple Classifier Systems (다중 분류기 시스템을 이용한 자동 문서 분류)

  • Kim, In-Cheol
    • The KIPS Transactions:PartB
    • /
    • v.11B no.5
    • /
    • pp.545-554
    • /
    • 2004
  • Combining multiple classifiers to obtain improved performance over the individual classifier has been a widely used technique. The task of constructing a multiple classifier system(MCS) contains two different Issues how to generate a diverse set of base-level classifiers and how to combine their predictions. In this paper, we review the characteristics of existing multiple classifier systems : Bagging, Boosting, and Slaking. For document classification, we propose new MCSs such as Stacked Bagging, Stacked Boosting, Bagged Stacking, Boosted Stacking. These MCSs are a sort of hybrid MCSs that combine advantages of existing MCSs such as Bugging, Boosting, and Stacking. We conducted some experiments of document classification to evaluate the performances of the proposed schemes on MEDLINE, Usenet news, and Web document collections. The result of experiments demonstrate the superiority of our hybrid MCSs over the existing ones.

The study on the object recognition using Fuzzy Classification system based on Support Vector (서포트 벡터 기반 퍼지 분류 시스템을 이용한 물체 인식)

  • Kim, Sung-Jin;Won, Sang-Chul
    • Proceedings of the KIEE Conference
    • /
    • 2003.11b
    • /
    • pp.167-170
    • /
    • 2003
  • 본 논문에서는 패턴 인식의 전형적인 경우인 보이기 기반 물체 인식(Appearance based object recognition)을 수행하기 위하여, 일반적인 퍼지 분류 모델과, 서포트 벡터 머신을 하이브리드(hybrid) 하게 연결한 서포트 벡터 기반 퍼지 분류 시스템이라는 새로운 방법을 제안하고 이에 대하여 연구한다. 일반적인 분류(classification)문제의 경우 두 클래스로 구분하는데 최적의 성능을 가지고 있는 서포트 벡터 머신이 다중클래스(Multiclass)의 경우 발생 하는 계산량의 증가 문제를 해 결하기 위하여 다중 클래스 분류(Multiclass classification)에 장점을 가진 퍼지 분류 시스템을 도입, 서포트 벡터 머신에 연결함으로써 단점을 보완하는 시스템을 제안한다. 즉 서포트 벡터 머신을 통해 퍼지 시스템의 구조를 러닝(learning)하는데 사용하여 최종 적으로는 퍼지 분류 시스템(Fuzzy Classifier)이 나오도록 하는 것이다. 이 시스템의 성능을 확인하고자 여러 가지 물체들에 대한 이미지를 가지고 있는 COIL(Columbia Object Image Library) 데이터 베이스를 사용하여 보이기 기반 물체 인식(Appearance based Object Recognition)을 수행 하였으며 이를 순수한 서포트 벡터 머신만을 이용하여 물체 인식을 수행한 경우와 정확도 및 인식 시간에 대하여 비교하였다.

  • PDF

Classifier System for Real time Adaptive Behavior Based on Rule Clustering (룰 클러스터링에 의한 실시간 적응행동 분류자 시스템)

  • 황철민;김지윤;김현영;심귀보
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2003.05a
    • /
    • pp.47-50
    • /
    • 2003
  • 기계학습의 한 종류인 분류자 시스템은 간단한 문제에 대하여 실시간 처리와 온라인 학습이 가능하다. 그러나 복잡한 환경에서는 빠른 적응이 힘들다. 본 논문에서는 복잡한 환경에서 분류자 시스템의 적응 성능을 개선함으로써 실시간이 가능하도록 전체 환경을 분류하고 각기 다른 룰 셋을 이용하는 룰 클러스터링에 의한 분류자 시스템을 제안한다 환경을 상황에 따라 나눔으로써 전체 환경이 변화하였을 경우 각 상황에 따른 변화에 대해서만 추가적으로 학습함으로써 탐색 공간을 줄여 학습 시간을 감소시킨다. 제안한 시스템은 분류자 시스템 중 ZCS을 이용하여 로봇축구 시스템에 적용하여 기존의 방법과 그 성능을 비교 검토한다.

  • PDF

Supervised Classification Systems for High Resolution Satellite Images (고해상도 위성영상을 위한 감독분류 시스템)

  • 전영준;김진일
    • Journal of KIISE:Computing Practices and Letters
    • /
    • v.9 no.3
    • /
    • pp.301-310
    • /
    • 2003
  • In this paper, we design and Implement the supervised classification systems for high resolution satellite images. The systems support various interfaces and statistical data of training samples so that we can select the m()st effective training data. In addition, the efficient extension of new classification algorithms and satellite image formats are applied easily through the modularized systems. The classifiers are considered the characteristics of spectral bands from the selected training data. They provide various supervised classification algorithms which include Parallelepiped, Minimum distance, Mahalanobis distance, Maximum likelihood and Fuzzy theory. We used IKONOS images for the input and verified the systems for the classification of high resolution satellite images.

A Meta-learning Approach for Building Multi-classifier Systems in a GA-based Inductive Learning Environment (유전 알고리즘 기반 귀납적 학습 환경에서 다중 분류기 시스템의 구축을 위한 메타 학습법)

  • Kim, Yeong-Joon;Hong, Chul-Eui
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.19 no.1
    • /
    • pp.35-40
    • /
    • 2015
  • The paper proposes a meta-learning approach for building multi-classifier systems in a GA-based inductive learning environment. In our meta-learning approach, a classifier consists of a general classifier and a meta-classifier. We obtain a meta-classifier from classification results of its general classifier by applying a learning algorithm to them. The role of the meta-classifier is to evaluate the classification result of its general classifier and decide whether to participate into a final decision-making process or not. The classification system draws a decision by combining classification results that are evaluated as correct ones by meta-classifiers. We present empirical results that evaluate the effect of our meta-learning approach on the performance of multi-classifier systems.

The selection of Best suited Automatic Web Document Classification Based on Intranet (인트라넷 기반의 최적의 웹문서 자동 분류기법 선정)

  • 김국희;윤희병
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2004.10a
    • /
    • pp.423-426
    • /
    • 2004
  • 인트라넷에서는 증가하는 웹문서의 검색을 목적으로 웹 검색엔진의 도입이 활발히 진행 중이며 대부분 찾아야할 키워드를 알고 접근하는 검색엔진 형태이다. 그러나 사용자가 무엇을 찾아야 하는지 모르는 경우 웹문서 분류체계는 효율적인 방법을 제시할 수 있다. 일부 구축되어 있는 분류체계는 수작업에 의한 분류로 인해 증가하는 웹문서의 양에 효율적으로 대처하기 곤란하므로 자동분류기법을 활용한 분류가 더 효율적일 것이다. 본 논문에서는 국방인트라넷의 수작업으로 구축된 분류체계를 대상으로 용어 가중치를 계산하는 방법을 달리하여 다양한 분류기법을 적용하여 성능을 비교평가하고 웹문서 자동분류시스템에 적용하여 분류성능의 향상을 도모하고자 한다.

  • PDF

A Design of Clustering Classification Systems using Satellite Remote Sensing Images Based on Design Patterns (디자인 패턴을 적용한 위성영상처리를 위한 군집화 분류시스템의 설계)

  • Kim, Dong-Yeon;Kim, Jin-Il
    • The KIPS Transactions:PartB
    • /
    • v.9B no.3
    • /
    • pp.319-326
    • /
    • 2002
  • In this paper, we have designed and implemented cluttering classification systems- unsupervised classifiers-for the processing of satellite remote sensing images. Implemented systems adopt various design patterns which include a factory pattern and a strategy pattern to support various satellite images'formats and to design compatible systems. The clustering systems consist of sequential clustering, K-Means clustering, ISODATA clustering and Fuzzy C-Means clustering classifiers. The systems are tested by using a Landsat TM satellite image for the classification input. As results, these clustering systems are well designed to extract sample data for the classification of satellite images of which there is no previous knowledge. The systems can be provided with real-time base clustering tools, compatibilities and components' reusabilities as well.

A Web-Based Information System for the Integrated Search for Protein Structure Classifications (단백질 구조 분류의 통합 검색을 위한 웹 정보시스템)

  • 신원준;황의윤;김진홍;안건태;이명준
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2004.04b
    • /
    • pp.274-276
    • /
    • 2004
  • 단백질은 대부분 공간상의 특징을 고려할 때 유사한 부분을 기준으로 분류되는 경우가 많다 단백질 구조 분류 데이터베이스는 단백질이 가지는 다양한 구조 정보를 바탕으로 단백질 구조 분류 정보를 제공하고 있다. 대표적인 단백질 구조 분류 데이터베이스에는 CATH와 SCOP 데이터베이스가 있다. 이들 데이터베이스는 서로 다른 구조 분류 기준으로 단백질 구조를 분류하고 있으며, 단백질 구조 분류 정보를 검색하는 웹 서비스를 개별적으로 제공하고 있다. 따라서 여러 종류의 단백질 구조 분류 정보를 하나의 웹 사이트에서 검색할 수 있으면 유용할 것이다. 본 논문에서는 CATH와 SCOP에서 정의한 단백질 구조 분류 정보의 통합적인 검색 기능 일 통계 정보를 체계적으로 제공하는 웹 정보시스템에 관하여 기술한다. 제안된 시스템은 CATH와 SCOP에서 제공하는 각각의 데이터를 가공하여 효과적인 구조 분류 검색을 지원하는 구조화된 데이터베이스를 구축하였다. 개발된 시스템은 PDB 식별자, CAT터 식별자. 그리고 SCOP 식별자 또는 단백질 분류 이름으로 한번의 검색으로 두 데이터베이스에서 제공하는 계층적 구조 분류 정보를 제공한다. 또한, 단백질 구조에 대한 유용한 통계 정보를 제공한다.

  • PDF

Spam-mail Filtering System Using Naive Bayesian Classifier and Message Rule (나이브 베이지안 분류자와 메세지 규칙을 이용한 스팸메일 필터링 시스템)

  • 조한철;조근식
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2002.04b
    • /
    • pp.223-225
    • /
    • 2002
  • 인터넷의 급속한 성장과 함께 E-Mail은 대표적인 통신수단의 하나가 되어버렸다. 편리하다는 점을 이용해서 엄청난 양의 스팸메일이 매일같이 쏟아져 오고 , 그 문제점의 심각성에 정보통신부에서 정보통신망 이용촉진 및 정보보호 등에 관한 법률이라는 새로운 법률까지 생겨났다. 본 논문에서는 이 법률에서 요구하는 '광고'라는 문구를 걸러내는 등의 메시지 규칙을 갖는 시스템과 기존의 문서 분류에 널리 쓰이던 나이브 베이지안 분류자(Naive Baesian Classifier)를 결합한 스팸 메일 필터링 시스템(Spam-mail Fitering System)을 제안한다. 제안된 시스템에서는 사용자가 직접 규칙을 작성할 필요없이 학습한 데이터를 갖고 자동으로 스팸메일을 분류할 수가 있다. 들어온 메일은 메시지 규칙 기반 필터가 먼저 적용되고, 메세지 규칙 기반 필터에서 분류되지 않으면 나이브 베이지안 필터에서 분류된다. 실험에서는 제안된 시스템의 성능을 평가하기 위해서 메시지 규칙을 사용한 시스템 및 나이브 베이지만 분류자 시스템과 비교 평가하였다. 또한 임계치를 변경함으로써 제안된 시스템의 성능을 높일 수있도록 하였다.

  • PDF

Hybrid Multiple Classifier Systems (하이브리드 다중 분류기시스템)

  • Kim In-cheol
    • Journal of Intelligence and Information Systems
    • /
    • v.10 no.2
    • /
    • pp.133-145
    • /
    • 2004
  • Combining multiple classifiers to obtain improved performance over the individual classifier has been a widely used technique. The task of constructing a multiple classifier system(MCS) contains two different issues : how to generate a diverse set of base-level classifiers and how to combine their predictions. In this paper, we review the characteristics of the existing multiple classifier systems: bagging, boosting, and stacking. And then we propose new MCSs: stacked bagging, stacked boosting, bagged stacking, and boasted stacking. These MCSs are a sort of hybrid MCSs that combine advantageous characteristics of the existing ones. In order to evaluate the performance of the proposed schemes, we conducted experiments with nine different real-world datasets from UCI KDD archive. The result of experiments showed the superiority of our hybrid MCSs, especially bagged stacking and boosted stacking, over the existing ones.

  • PDF