개인화 된 특허 분류 시스템은 기존의 자동 분류 및 특허 문서의 특성, 그리고 분류 체계의 개인화를 고려하여 접근해야 한다. 본 논문에서는 개인화 된 특허 분류 시스템을 구축하는데 있어 개인화된 분류 체계 및 모델의 구축, 특히 분류체계 구축에 있어서의 자동화에 초점을 두었다. 우리는 특히 분류체계 구축 자동화에 있어 특허 문서의 기존 분류체계인 IPC 및 문서 클러스터링을 활용하였다. 다음으로 이를 기반으로 한 구축 시스템 사례를 들었다. 구축 후 나타난 정성적 문제점을 분석해보고, 분석 결과를 향후 연구 방향으로 삼고자 한다.
무선 통신의 발달과 센서 장비의 소형화로 인하여 다양한 인체 센서들이 개발되고 있으며 이에 따라 이들 인체 센서로부터 생성되는 데이터를 누적하여 분석 및 예측을 해야 할 필요성이 증가하고 있다. 본 연구에서는 누적된 인체 센서 데이터에 대한 분류화 기법을 제안하여 구현하고 성능을 검증하였다. 분류화 기법은 인체 센서 데이터에 잘 적용될 수 있는 지지벡터 기계를 활용하여 구현하였다. 인체 센서 데이터의 대표패턴 정의와 실험을 위한 잡음 생성을 통하여 분류화 정확도를 높일 수 있도록 실험을 설계하였고 다양한 설정 변수에서도 기법을 실험하여 빠르고 정확한 기법을 설계 및 구현하였다.
문서 범주화에 이용되는 학습알고리즘 중에서 이원 패턴인식 문제를 해결하기 위해 제안된 SVM은 다른 분류기 보다 우수한 성능을 보이고 있다. 본 연구에서는 Reuters-21578 (ModApte 분할판)을 대상으로 SVM 분류기를 이용하여 단어빈도, 역문헌빈도, 문헌길이 정규화 공식을 자질에 대한 가중치로 적용하여 성능을 평가하고, 선형 SVM과 비선형 SVM의 분류 성능을 비교하였다. 또한 이원 분류기를 승자독식 방법과 쌍단위 분류방법에 의해 다원 분류기로 확정하여 실험한 후 이원 분류기와의 성능을 비교 분석하였다.
Out of Vocabulary(OOV) 문제는 인공신경망 기계번역(Neural Machine Translation, NMT)에서 빈번히 제기되어 왔다. 이를 해결하기 위해, 기존에는 단어를 효율적인 압축할 수 있는 Byte Pair Encoding(BPE)[1]이 대표적으로 이용되었다. 하지만 BPE는 빈도수를 기반으로 토큰화가 진행되는 결정론적 특성을 취하고 있기에, 다양한 문장에 관한 일반화된 분절 능력을 함양하기 어렵다. 이를 극복하기 위해 최근 서브 워드를 정규화하는 방법(Subword Regularization)이 제안되었다. 서브 워드 정규화는 동일한 단어 안에서 발생할 수 있는 다양한 분절 경우의 수를 고려하도록 설계되어 다수의 실험에서 우수한 성능을 보였다. 그러나 분류 작업, 특히 한국어를 대상으로 한 분류에 있어서 서브 워드 정규화를 적용한 사례는 아직까지 확인된 바가 없다. 이를 위해 본 논문에서는 서브 워드 정규화를 대표하는 두 가지 방법인 유니그램 기반 서브 워드 정규화[2]와 BPE-Dropout[3]을 이용해 한국어 분류 문제에 대한 서브 워드 정규화의 효과성을 제안한다. NMT 뿐만 아니라 분류 문제 역시 단어의 구성성 및 그 의미를 파악하는 것은 각 문장이 속하는 클래스를 결정하는데 유의미한 기여를 한다. 더불어 서브 워드 정규화는 한국어의 문장 구성 요소에 관해 폭넓은 인지능력을 함양할 수 있다. 해당 방법은 본고에서 진행한 한국어 분류 과제 실험에서 기존 BPE 대비 최대 4.7% 높은 성능을 거두었다.
바이오 칩 분석 시스템은 다양한 종류의 바이오칩에서 자료를 추출하고 유용한 정보를 얻기 위해 데이터를 분석하는 시스템이다. 데이터를 분석하는 다양한 기법 중 대표적인 것이 클러스터링과 분류화(classification)이다. 클러스터링은 비슷한 개체들을 한 집단으로 묶는 방법이고, 분류화는 미리 정해진 클래스에 데이터를 해당하는 클래스로 분류하는 기법이다. 다양한 알고리즘을 통해서 데이터를 클러스터링 및 분류화를 할 수 있는데 바이오칩과 같이 데이터의 양이 방대한 경우는 생태계를 모방한 알고리즘을 적용하는 것이 효율적이다. 본 논문에서는 생태계 모방알고리즘 중 하나인 PSO 집단 알고리즘을 사용하여 바이오칩 데이터로부터 클러스터의 중심을 찾아 클러스터링을 하교, 분류 규칙을 발견하여 이를 바이오 데이터에 적용, 분류해 주는 시스템을 기술하고 있다.
본 논문에서는 주제별 분류기반의 개인화 검색시스템의 평가를 위해서 기존의 한글 정보 검색시스템 평가를 위해서 사용하는 한글 테스트 컬렉션(HANTEC v2.0)을 사용하였다. 주제별 분류기반의 개인화 검색 시스템의 평가를 위해서 첫째, 한글 테스트 컬렉션을 한국일보-40075 문서분류 테스트 컬렉션을 이용하여 주제별 분류를 수행 하였다. 둘째, 한국일보-40075 문서분류 테스트 컬렉션의 분류 체계에 다라 한글 테스트 컬렉션의 문서들을 kNN 분류기를 이용하여 분류를 수행하였다. 마지막으로 구축된 컬렉션을 이용하여 주제별 분류기반의 개인화 검색시스템의 성능 평가를 수행하였다.
본 논문에서는 공간 영역에서의 블록 분류 (block classification)와 순방향 신경망 필터(feedforward neural network filter)를 이용한 블록 기반 부호화에서의 적응적 블록화 현상 제거 알고리듬을 제안하였다. 제안한 방법에서는 각 블록 경계를 인접 블록간의 통계적 특성을 이용하여 평탄 영역과 에지 영역으로 분류한 후, 각 영역에 대하여 블록화 현상이 발생하였다고 분류된 클래스에 대하여 적응적인 블록간 필터링을 수행한다. 즉, 평탄 영역으로 분류된 영역 중 블록화 현상이 발생한 영역은 오류 역전파 학습 알고리듬 (error backpropagation learning algorithm)에 의하여 학습된 2계층 (2-layer) 신경망 필터를 이용하여 블록화 현상을 제거하고, 복잡한 영역으로 분류된 영역 중 블록화 현상이 발생한 영역은 에지 성분을 보존하기 위하여 선형 내삽을 이용하여 블록간 인접 화소의 밝기 값만을 조정함으로써 블록화 현상을 제거한다. 모의 실험 결과를 통하여 제안한 방법이 객관적 화질 및 주관적 화질 측면에서 기존의 방법보다 그 성능이 우수함을 확인하였다.
본 연구는 전통적인 문헌분류와 주제어기반 분류(Subject-Based Classification: SBC)의 상대적인 비교를 통하여 SBC 체계가 범주화 및 분류체계의 측면에서 갖는 특성을 분석함으로써 SBC의 정체성을 명확히 정립하는 데 목적이 있다. 분석을 위하여 12종의 실제 SBC 체계를 수집하여 그 체계의 전반 및 특성을 개괄하고, 범주화의 관점과 내용, 그리고 분류의 이론적 측면에서 DDC와 상대적인 방식으로 분석하였다. 분석의 결과 SBC 체계는 분류의 관점의 차이에서 비롯되는 범주화의 내용과 구조적인 측면에서 DDC와 큰 차이가 있으며, 분류체계로서의 요건이 적용되는 정도와 방식에 있어서도 기존의 문헌분류체계와 상반된 특성이 명확하게 드러남을 파악할 수 있었다. 따라서 향후 이러한 SBC의 특성을 고려한 분류론적 논의와 이론 개발이 필요함을 밝혔다.
본 논문에서는 웹 데이터 마이닝을 통하여 웹 사이트를 방문한 사용자의 컨텐츠 유형에 따른 정보를 조사하고, 필터링 과정을 통해 분류화하고, 이러한 과정을 통해 얻은 정보를 이용하여 뉴스레터를 발송하며, 발송된 뉴스레터로부터의 컨텐츠 유형에 따른 CTR(Click Through Rate)과 사용자 반응을 추적하여 이러한 정보를 분석하고 사용자 프로파일 및 웹 사이트로부터 분류화된 정보, 그리고 추적된 정보와 함께 뉴스레터 컨텐츠를 재구성하는 개인화된 자동화 뉴스레터 시스템을 설계하고 구현한다.
최근 고령화 사회가 도래함에 따라 복지 사회 실현을 위해 의료기술에 IT 기술을 접목하여 인간의 건강을 효과적으로 유지하려는 요구가 증가하였다. 이러한 요구의 증가로 인해 원격으로 건강 상태를 검진하여 질병을 방지하거나 만성적인 환자의 건강상태를 장기적으로 관찰할 수 있는 IT 기술에 대한 연구가 활발하게 진행되고 있다. 본 연구에서는 누적된 인체 센서 데이터에 대한 분류화 기법을 제안하여 구현하고 성능을 검증하였다. 분류화 기법은 인체 센서 데이터에 잘 적용될 수 있는 지지벡터 기계를 활용하여 구현하였다. 인체 센서 데이터의 대표패턴 정의와 실험을 위한 잡음 생성을 통하여 분류화 정확도를 높일 수 있도록 실험을 설계하였고 다양한 설정 변수에서도 기법을 실험하여 빠르고 정확한 기법을 설계 및 구현하였다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.