본 연구는 엔트리 인공지능 모델을 활용하여 인문사회계열 대학생을 위한 인공지능 교양 교과목을 개발하는 데 목적이 있다. 컴퓨터, 인공지능, 교육학 전문가 집단을 구성하고 선행연구 분석, 델파이 기법을 활용하여 최종 인공지능 교양 교과목을 개발하였다. 연구결과 교육 주제는 크게 이미지 분류, 영상인식, 텍스트 분류, 소리 분류 총 4가지로 구성하였다. 교육 내용은 주제별로 1) 인공지능 원리 이해, 2) 엔트리 인공지능 모델 활용 실습, 3) 윤리적 영향성 확인, 4) 배운 내용을 기반으로 실생활 문제 해결을 위한 팀별 아이디어 회의 단계로 구성하였다. 본 교과목을 통해 인문사회계열 대학생은 인공지능 핵심기술의 원리 이해를 바탕으로 엔트리 인공지능 모델을 통해 직접 구현할 수 있고 더 나아가 실생활의 다양한 문제를 인공지능으로 해결해보는 경험을 기저로 기술을 이해하고 인공지능 시대 필요한 윤리를 모색해보며 책임감 있게 사용하는데 긍적적인 기여를 기대해볼 수 있을 것이다.
우울증은 가장 유병율이 높은 '기분 장애'(mood disorder)의 일종으로, 약 20%의 인구가 일생동안 우울증 증상을 한번쯤 경험한다. 이러한 우울증은 크게 '우울 장애'(major depressive disorder)와 '양극성 장애'(bipolar disorder)로 구분된다. 환자의 질병 분류에 따라 사용되는 약과 의학적 처방이 다르기 때문에, 우울증 환자의 빠르고 정확한 진단 및 분류는 매우 중요하다. 기존의 다면성 인성검사(MMPI)와 같은 통계적인 방법이 우울증 환자의 진단을 위해 사용돼 왔으나, 장시간의 집중력을 요구하기 때문에 집중력 저하의 특징을 보이는 우울증 환자들에게 적용하는데 어려움이 있다. 이 논문에서는 이러한 문제를 해결하고자, 빠른 측정이 가능하고 측정동안 집중력을 요하지 않는 EEC 데이터의 분석을 통해 우울증 환자의 분류를 시도하였다. EEG 채널 간 정보 흐름에서의 비선형성과 근사 엔트로피(approximate entropy)의 크기를 속성(attribute)으로 사용하여 데이터 마이닝 기법 중 의사 결정 트리(decision tree)와 가능성 기반 서포트 벡터머신(possibilistic support vector machines) 통해 분석을 수행하였다. 30명의 주요 우울장애환자와 24명의 양극성 장애 환자를 통해 위의 분석을 수행한 결과 의사 결정 트리의 경우 85.19% 의 정확도를 가지며 분류해냈고, 가능성 기반 서포트 벡터머신의 경우 77.78%의 정확도를 보여줬다. 본 연구는 가능성 기반 서포트 벡터 머신 분석이 우울증 환자는 진단하고 분류하는데 유용하게 적용될 수 있는 가능성을 제시하고 있다.
분류기법은 과거데이터를 분석하여 새로운 데이터에 대한 예측에 사용되며, 결정트리 알고리즘을 많이 사용한다. 따라서, 이 기법은 전자상거래에서 DB 마케팅을 위해 데이터베이스에 저장되어 있는 고객데이터를 분석하여 암시적인 고객들의 행위규칙을 찾고, 예측하기 위하여 사용할 수 있다. 기존의 분류알고리즘들은 전자상거래에서 일반적인 연속형 고객데이터를 처리하는데는 많은 문제점을 가지고 있다. 이러한 문제를 해결하기 위하여 연속형 데이터를 범주형 데이터로 변환하는 알고리즘을 구현하였다. 이 논문은 전자상거래에 적용하기 위한 고객분류기로서 ID3 알고리즘에 1차원 클러스터링알고리즘을 결합하여 사용한다.
패킷 분류근 인터넷 망에서 QoS(Quality of Service)보장, VPN(Virtual Private Network)등과 같은 사용자들의 다양한 서비스를 수용하기 위한 중요한 요소이다. 패킷 헤더는 기본적으로 IP(Internet Protocol) 패킷 헤더 내의 목적지 주소뿐만 아니라 발신지 주소, 프로토콜, TCP(Transmission Control Protocol)포트 번호 등 여러 필드들을 조합하여 룰 테이블로부터 best matching 룰을 찾는 것이다. 본 논문에서는 멀티 비트 트라이 구조의 트리 비트맵을 이용하여 하드웨어적인 룰 검색이 가능한 패킷 분류 기법을 제안한다. 검색 대상 필드 및 패킷 분류 룰을 구성하는 프레픽스를 비교 단위가 되는 일정한 비트 크기의 멀티 비트로 나누고, 이와 같이 구분된 멀티 비트 단위로 트리 비트맵 기반의 룰 검색 기능을 수행한다. 제안한 기법은 프레픽스의 일정한 상위 비트들에 대해서는 인덱싱 키로 사용하여 룰 검색을 위한 메모리 액세스 횟수를 줄이도록 하였다. 또한 룰 검색시 성능 저하를 초래하는 백트랙킹이 발생하지 않도록 하기 위하여 룰 테이블 구축시 마커 프레픽스에 대한 처리 기법을 제안하였다 그리고 본 논문에서는 IPMA(Internet Performance Measurement Analysis) 프로젝트에서 제공하는 라우팅 테이블의 프레픽스들을 이용하여 2차원 즉, 목적지 주소와 발신지 주소의 2필드로 구성되는 랜덤 룰 셋을 생성하고 제안한 기법에 대한 메모리 소요량 및 성능 비교를 하였다.
자동 게임 프로그램(auto-playing game programs)은 게임 플레이어를 대신하여 게임 캐릭터를 조종하는 프로그램으로 MMORPG(massively multi-player online role playing game)에서 빈번히 사용되고 있다. MMORPG에서 게임 캐릭터의 레벨을 올리기 위해서는 경험치가 필요하며, 경험치 증가 과정에서 아이템을 구매할 때 사용되는 게임 머니와 특정한 기술을 사용할 수 있는 아이템을 획득한다. 이러한 레벨-업 과정에서 게임 플레이어들은 지루함을 느끼게 되고, 빠른 게임 캐릭터의 성장을 위해 자동 프로그램을 사용하여 게임 캐릭터의 레벨을 증가시키는 경우가 빈번히 발생한다 그러나 자동 프로그램은 게임상에서 비정상적으로 자원을 독점하여 게임 시스템을 황폐화시킬 뿐만 아니라, 불법적인 수익사업으로 악용되어 건전한 게임산업 육성을 방해한다. 본 논문에서는 이러한 자동 게임 프로그램을 찾아내기 위하여 게임 캐릭터에 의해 발생되는 마우스와 키보드를 포함한 윈도우 이벤트 시퀀스를 분석하고, 이벤트 시퀀스로부터 속성 벡터를 생성하여 결정트리 학습을 수행하였다. 결정트리 학습은 윈도우 이벤트 시퀀스에 의해 생성된 속성 벡터들을 이용하여 자동 프로그램을 분류한다. 본 논문에서는 윈도우 이벤트 시퀀스를 활용하여 생성한 26개의 속성들을 결정트리 학습에 적용함으로써 MMORPG에서 자동 프로그램을 효과적으로 분류할 수 있다는 것을 MMORPG에 속하는 몇 가지 게임에 대한 실험을 통해 확인하였다.
실체화 뷰 선택은 질의 수행 시간과 제한된 저장 공간 등의 유지 비용을 고려하여 최적의 실체화 뷰 집합을 선택하고 유지하는 것이다. 본 논문에서는 의사결정 트리를 이용한 실체화 뷰 선택기법을 제안한다. 제안기법은 의사결정 트리를 이용하여 실체화 뷰로 생성될 질의를 판단하고 실체화 뷰 교체가 필요한 경우 메타데이터 테이블을 이용하여 교체 대상을 결정한다. 의사결정 트리는 높은 우선순위를 가진 속성으로부터 차례대로 데이터를 분류하기 때문에 이용도가 높은 실체화 뷰를 선택하는 방법을 제공하고 메타데이터 테이블은 실체화 뷰 집합의 빠른 교체 수행과 효율적인 유지보수를 제공한다. 성능평가를 통해 제안된 기법은 실체화 뷰 비율에 따른 질의처리 시간이 기존기법보다 약 13%의 성능 향상을 보였다.
본 논문에서는 토픽맵 기반의 온톨로지 병합 과정에서 발생할 수 있는 충돌의 유형을 트리 구조로 정의하고 충돌 탐지 및 해결을 통하여 두 온톨로지를 하나로 병합하는 기법을 제안한다. 병합충돌은 의미적 대응 요소들의 유사값에 기반하여 엘리먼트기반, 구조기반 임시기반의 트리 구조로 분류되고 이 충돌 트리를 이용하여 두 매핑 요소사이의 병합충돌을 탐지하고 해결한다. 실험을 위해 토픽맵 질의언어 tolog를 사용하여 동서양 철학온톨로지 및 독일 문학온톨로지들의 병합 전과 후의 질의 결과를 비교하고 이를 정확율과 재현율로 병합 성능을 평가하였으며 그 결과 손실없는 병합이 가능함을 보였다.
무선 Ad-hoc 네트워크는 어떠한 하부구조와 중앙관리의 도움 없이 임시 네트워크를 구성하는 무선 이동 호스트들의 집합이다. Ad-hoc 네트워크에도 오디오/비디오 등의 컨퍼런스가 열릴 수 있으며, 이때 다중의 호스트에 데이터를 전달하는 멀티캐스트 작업이 필요하다. Ad-hoc 네트워크에서는 네트워크 토폴로지의 동적인 변화로 인하여 전송경로가 변동되는 문제가 발생될 수 있다. 따라서 기존의 유선 네트워크에서 사용하던 트리 구축방법을 사용할 수 없다. 이러한 문제를 미리 예측하기 위하여 게이트웨이 호스트들의 이동성을 단계별로 분류한 것과 결합도를 전송하여 트리를 구축함으로써 호스트들의 이동에 따른 트리상의 경로가 끊어질 확률을 줄여 트리 재구축으로 소모되는 시간과 경비를 줄일 수 있다.
본 논문에서는 의존문법을 이용해 한국어와 같이 비교적 어순이 자유롭고, 지배성분 후위의 특성을 갖는 언어를 효율적으로 분석할 수 있는 오른쪽 우선 분석 방법을 제안한다. 지배가능경로를 이용하면 생성되는 의존 트리의 수를 줄일 수 있음을 보이며, 의존 관계의 검사를 위해서는 지배가능경로 상의 문장 성분만을 조사하면 됨을 보인다. 한국어에 적용한 실험 결과를 보이며, 각 방식에 따른 비교 기준은 생성되는 외존 트리의 갯수와 분석 수행 시간으로 한다. 이때 한국어 문장성분간의 의존관계는 품사 분류에 의한 기본적인 의존 관계만을 이용하며, 격돌이나 의미 속성 등 추가적인 제약 사항은 이용하지 않는다. 오른쪽 우선 구문 분석은 지배가능경로를 이용함으로써 의존 관계의 빠른 검색을 할 수 있었으며, 문장 지배 성찰을 포함하지 않는 부분 의존 트리를 생성하지 않음으로써 생성되는 의존 트리의 수를 줄일 수 있었다.
본 논문에서는 SR(Super-Resolution)을 계산하는데 필요한 데이터를 효율적으로 분류하고 분할하여 빠르게 SR연산을 가능하게 하는 쿼드트리 기반 최적화 기법을 제안한다. 제안하는 방법은 입력 데이터로 사용하는 연기 데이터를 다운스케일링(Downscaling)하여 쿼드트리 연산 소요 시간을 감소시키며, 이때 연기의 밀도를 이진화함으로써, 다운스케일링 과정에서 밀도가 손실되는 문제를 피한다. 학습에 사용된 데이터는 COCO 2017 Dataset이며, 인공신경망은 VGG19 기반 네트워크를 사용한다. 컨볼루션 계층을 거칠 때 데이터의 손실을 막기 위해 잔차(Residual)방식과 유사하게 이전 계층의 출력 값을 더해주며 학습한다. 결과적으로 제안하는 방법은 이전 결과 기법에 비해 약15~18배 정도의 속도향상을 얻었다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.