행정 빅데이터를 활용하는 예측 모형을 운영하기 위해서는 정책의 변화 및 변동성 심한 데이터의 특성이 고려가 되어야만 한다. 이런 상황을 고려하여 본 연구에서는 Cut-off Voting Classifier(CVC) 알고리즘을 제안한다. 제안하는 알고리즘은 여러개의 약 분류기를 활용하여 적중률이 급격하게 하락하는 것을 방지하는 알고리즘이다. 본 연구에서는 제안하는 알고리즘을 실험을 통해 성능을 검증한다. 성능검증 결과 급격하게 예측모형 적중률이 하락하는 상황에서도 안정적으로 예측률을 유지한다는 것을 입증할 수 있었다.
본 연구는 교통사고의 발생원인에 대한 인식유형과 감소대책에 대한 인지 유형별 영향요인의 정도를 분석하기 위하여 수량화이론 II류와 CHAID 분석법을 이용하여 분류모델과 판별모델을 구축하였다. 수량화이론 II류에 의한 교통사고 발생원인에 대한 인식 유형별 영향요인 판별모델은 전체 적중률이 78.4%로 매우 높게 나타났다. 편상관계수는 설명변수의 항목 중 학력, 성별, 운전경력 년 수, 소유 차종의 순으로 영향을 미치고 외적 변수인 교통사고 발생원인에 대한 유형에서는 기여 정도가 교통단속 부재 > 교통체계 미비 > 승용차 과다 사용 >잘못된 의식 때문의 순으로 나타났다. 교통사고 감소 대책에 대한 인지유형별 영향요인 판별모델은 전체 적중률이 59.9%로 높게 나타났으며, 편상관 계수는 학력, 성별, 운전경력 연수, 연령의 순으로 영향을 미치고 있고, 외적 변수인 교통사고 감소 대책에 대한 유형에서는 기여 정도가 교통단속 강화 > 대중교통수단 이용 유도 > 교통체계 개선 > 의식 개혁의 순으로 나타났다. 또한 CHAID 분석법에 의한 교통사고 발생원인에 대한 인식 유형별 영향요인 분류모델에 있어서는 예측변수로 학력, 연령, 성별, 통행수단의 네 가지 변수가, 교통사고의 감소 대책에 대한인지 유형별 영향요인 분류모델에 있어서는 학력, 운전경력 연수, 성별 그리고 통행수단의 네 가지 변수가 카이제곱 통계량 이 5%의 유의수준에서 유의한 것으로 판단되었다. 교통사고 발생원인 인식과 감소 대책의 인지 유형에 대한 빈도분석과 교차분석은 의식과 관련한 유형이 가장 높게 나타났으나 판별.분류모델에서는 교통단속과 관련한 유형이 기여 정도가 높고 의식 관련 유형이 상대적으로 낮게 나타나는 등 반대양상을 보이고 있어 심리적으로 내재되어 있고 표면에 잘 드러나지 않았던 의식 수준의 낮음이 분류모델을 통해서 명확하게 드러났다.
본 연구는 쌀과 현미의 연산 또는 신 구곡 판별법을 개발하기 위하여 쌀의 저장기간 동안 변화되는 지방의 일종인 인지질 성분을 지표물질로 이용하여 쌀과 현미의 신 구곡 판별식을 작성하였고 미지의 시료를 이용하여 판별식 검증을 수행하였다. 또한 벼의 저장 온도와 시기에 따른 인지질 지표의 판별정확도를 분석함으로써 인지질 지표의 실용적인 활용 가능성을 연구한 결과를 요약하면 다음과 같다. 1. 인지질 지표를 이용하여 쌀에 대한 판별식을 작성한 결과 쌀의 연산별 분류적중률은 90%, 신 구곡의 분류적중률은 97%로 나타나 연산 판별식보다 신 구곡 판별식의 적중률이 높게 나타났다. 따라서 신 구곡 판별식을 쌀의 판별식으로 확립하였고 연산을 알고 있는 미지의 시료를 이용하여 개발된 판별식의 정확도를 분석한 결과 판별식 정확도는 1차 분석에서는 82%, 2차 분석에서는 80%로 나타났다. 2. 현미에 대한 인지질 지표의 신 구곡 분류적중률은 96%로 나타나 95%이상의 적중률을 보여주었으므로 현미의 신 구곡 판별식을 확립하였다. 미지의 시료를 이용하여 개발된 판별식의 정확도를 분석한 결과 93%로 나타나 판별 정확도가 쌀에 비해 높게 나타났다. 현미는 백미에 비해 지방 함량이 많기 때문에 신곡과 구곡 간의 인지질 함량의 차이가 크게 나타나는 경향이었다. 3. 저장온도와 시기에 따른 쌀의 판별 정확도를 분석하기 위하여 벼 보관창고에서 동일한 시료를 수집하여 기확립된 쌀의 신 구곡 판별식에 대입하였을 때 상온 보관된 쌀의 정확도는 57.9~92.1%로 나타났고, 저온 보관된 쌀의 정확도는 86.8~94.7%의 범위로 나타났다. 쌀의 경우 저장 온도와 시기에 따라 판별되는 정확도가 달라졌고 저온 보관된 시료가 상온 보관된 시료에 비해 시기별 판별 정확도의 차이가 적은 것으로 나타났다. 4. 현미의 저장온도 및 시기에 따른 판별 정확도를 분석하기 위하여 벼 보관창고에서 동일한 시료를 수집하여 기 확립된 현미의 신 구곡 판별식에 대입하였을 때 상온 보관된 현미의 정확도는 94.7~100%로 나타났고, 저온 보관된 현미의 정확도는 92.1~100%의 범위로 나타났다. 현미의 경우 쌀에 비해 지방함량이 많고 강층의 존재로 산패가 더디게 진행되기 때문에 저장온도 및 시기에 상관없이 92%이상의 판별 정확도를 나타내었다.
이 논문에서는 지식발견과 데이터 마이닝에 관한 전반적인 소개와 고객이탈에 관한 것이다. 데이터 마이닝이란 과거에 수집된 데이터로부터 반복적인 학습과정을 거쳐 데이터에 내재되어 있는 패턴을 찾아내는 모델링 기법이며 통신서비스시장에서 데이터 마이닝 활용으로 고객이탈방지 모델을 인공신경망을 통해 구축하였다. 통신서비스시장의 경쟁이 심화됨에 따라 통신서비스 제공 업체가 고통으로 겪는 어려움 중의 하나가 고객이탈률이다. 따라서 데이터베이스에서 보다 가치 있는 정보를 찾아내 고객 이탈고객 분류의 적중률에 관하여 논의하였다.
본 연구에서는 Support Vector Machine(SVM)을 이용한 호스트 기반 침임 탐지 방법을 제안한다. 침입 탐지는 침입과 정상을 판단하는 이진분류 문제이므로 이진분류에 뛰어난 성능을 발휘하는 SVM을 이용하여 침입 탐지 시스템을 구현하였다. 먼저 감사자료를 system call level에서 분석한 후, sliding window기법에 의해 패턴 feature를 추출하고 training set을 구성하였다. 여기에 SVM을 적용하여 decision model을 생성하였고, 이에 대한 판정 테스트 결과 90% 이상의 높은 침입탐지 적중률을 보였다.
이 연구는 한국인의 정치적 성향을 판별하는데 복지에 대한 태도가 유의한 기여를 하는지 여부를 실증적으로 분석하고자 한다. 분석자료는 2022년도 수집된 한국복지패널 17년차 자료이다. 종속변수는 진보와 보수로 구분된 응답자의 정치적 성향이며 핵심 종속변수는 복지태도의 두 가지 측면, 보편주의 vs 선별주의에 대한 태도와 복지를 위한 증세에 대한 태도이다. 기존 연구들에서 정치적 성향에 영향을 미치는 것으로 알려진 성별, 연령, 정치에 대한 관심, 경제활동 상태, 교육수준 등이 통제변수로 활용되었다. 판별분석을 통해 종속변수 범주의 구분에 유의하게 하는 독립변수 확인, 확인된 독립변수를 활용하여 판별함수 구축, 판별 능력 측면에서 개별 독립변수들의 상대적 중요도 파악, 판별함수의 판별력 평가 및 새로운 판별 대상에 대한 범주 예측 등을 수행하였다. 분석결과, 판별함수에 의한 집단 간 판별점수는 유의한 것으로 나타났으며 '성별'과 '임시직 여부'를 제외한 모든 변수들이 유의한 판별효과를 보이는 것으로 나타났다. 종속변수의 판별에 미치는 효과의 크기는 '응답자 연령', '복지태도_증세', '복지태도_보편 vs 선별', '정치에 대한 관심', '교육수준' 순으로 나타났다. '진보' 집단의 79.8%, '보수' 집단의 81.2%가 정확히 분류된 것으로 나타났으며, 분류 적중률은 80.2%로 나타났다.
현재 대부분의 웹 프락시 또는 웹 캐쉬는 대규모 기관을 중심으로 사용되고 있다 하지만 인터넷을 사용하는 이용자 현화을 보면 오히려 대규모 조직에 속하는 이용자보다는 벤처나 PC 방과 같은 소규모 기관에 속해 있는 경우가 많다. 소규모 기관들은 사용 망 및 시스템의 용량 제한으로 인해 필요로하는 웹 문서를 원활히 제공받지 못하고 있다 또한 상용자들은 여러 윈도우를 열어놓고 다양한 종류의 URL에 접속하고 있으며 비교적 짧은 시간내에 또 다른 URL로 바꾸어 가면서 사용하고 실정이다. 본 논문에서는 근접한 지역에 위치하면서 특성이 유사한 소규모집단을 연결하는 웹캐쉬 구성 방안과 동일한 캐쉬용량으로도 적중률이 높고 웹 문서 사용자들이 요구하는 URL이 급격히 바뀌어도 적중률 저하를 차단할 수 있는 캐쉬알고리즘을 제시한다 제안 알고리즘은 요청된 URL이 속한 네트워크 경로에 따라 웹 문서 사용 특성을 분류하고 서로다른 경로에 속하는 웹문서를 서로 다른 저장 장소에 캐쉬를 하는 형태이다 제안 알고리즘을 실제 사이트에 적용하여 얻은 실험 결과를 분석하여 보면 적은 비용으로 기존 알고리즘보다 적중률 및 응답 시간 면에서 현저\ulcorner게 뛰어남을 알수 있다.
Altman의 연구(1965, 1977)나 Beaver의 연구(1986)와 같은 전통적 예측모형은 분석자의 판단에 따른 예측도가 높은 재무비율을 선정하여 다변량판별분석(MDA:multiple discriminant analysis), 로지스틱회귀분석 등과 같은 통계기법을 주로 이용해 왔으나 1980년 후반부터 인공지능 기법인 귀납적 학습방법, 인공신경망모형, 유전모형 등이 부실기업예측에 응용되기 시작했다. 최근 연구에서는 인공신경망을 활용한 변수 및 모형개발에 관한 보고가 있다. 그러나 지금까지의 연구가 주로 기업의 재무적 비율지표를 고려한 모형에 치중되었으며 정성적 자료인 비재무지표에 대한 검증과 선정이 자의적으로 이루어져온 경향이었다. 또한 너무 많은 입력변수를 사용할 경우 다중공선성 문제를 유발시킬 위험을 내포하고 있다. 본 연구에서는 부실기업예측모형을 수립하기 위하여 정량적 요인인 재무적 지표변수와 정성적 요인인 비재무적 지표변수를 모두 고려하였다. 재무적 지표변수는 상관분석 및 요인분석들을 통하여 유의한 변수들을 도출하였으며 비재무적 지표변수는 조직생태학내에서의 조직군내 조직사멸과 관련된 생태적 과정에 대한 요인들 중 조직군 내적요인으로 조직의 연령, 조직의 규모, 조직의 산업밀도를 도출하여 4개의 실험집단으로 분류하여 비재무적 지표변수를 보완하였다. 인공신경망은 다층퍼셉트론(multi-layer perceptrons)과 역방향 학습(back-propagation)알고리듬으로 입력변수와 출력변수, 그리고 하나의 은닉층을 가지는 3층 퍼셉트론(three layer perceptron)을 사용하였으며 은닉층의 노드(node)수는 3개를 사용하였다. 입력변수로 안정성, 활동성, 수익성, 성장성을 나타내는 재무적 지표변수와 조직규모, 조직연령, 그 조직이 속한 산업의 밀도를 비재무적 지표변수로 산정하여 로지스틱회귀 분석과 인공신경망 기법으로 검증하였다. 로지스틱회귀분석 결과에서는 재무적 지표변수 모형의 전체적 예측적중률이 87.50%인 반면에 재무/비재무적 지표모형은 90.18%로서 비재무적 지표변수 사용에 대한 개선의 효과가 나타났다. 표본기업들을 훈련과 시험용으로 구분하여 분석한 결과는 전체적으로 재무/비재무적 지표를 고려한 인공신경망기법의 예측적중률이 높은 것으로 나타났다. 즉, 로지스틱회귀 분석의 재무적 지표모형은 훈련, 시험용이 84.45%, 85.10%인 반면, 재무/비재무적 지표모형은 84.45%, 85.08%로서 거의 동일한 예측적중률을 가졌으나 인공신경망기법 분석에서는 재무적 지표모형이 92.23%, 85.10%인 반면, 재무/비재무적 지표모형에서는 91.12%, 88.06%로서 향상된 예측적중률을 나타내었다.
본 논문에서는 멀티 에이전트 모델에서 각 에이전트의 협력 방법을 제안하고 네이밍 에이전트의 메타데이터를 이용한 MA(Mobile Agent)의 노드 이주 알고리즘을 제시한다. 멀티 에이전트의 협력은 에이전트 시스템의 안정성과 분산 환경에서의 정보 검색의 신뢰성을 향상시킨다. 이러한 멀티 에이전트의 중요한 구성 요소 중, 네이밍 에이전트는 상호 에이전트를 식별하고 특정 객체를 참조하도록 에이전트 이름을 지원하며, 각 에이전트는 이러한 고유의 이름으로서 특정 객체를 참조한다. 또한 네이밍 에이전트는 에이전트 특성에 따라 SPA(Server Push Agent), CPA(Client Push Agent) 및 SPA(Server Push Agent) 등으로 각 에이전트를 분류하여 네이밍 서비스를 통합하고 관리하는 역할을 수행하며, 특정 MA에 노드 이주 정보를 제공하게 된다. 그러므로 MA의 노드 이주 시 적중 문건의 수, 적중률, 노드 처리 시간 및 네트워크 지연시간에 따른 우선순위를 부여하여 노드 이주의 효율성을 높일 수 있는 방안이 요구된다. 따라서 본 논문은 통합된 네이밍 서비스를 위한 네이밍 에이전트를 설계하고 적중 문건의 수, 적중률 및 탐색 문건의 수 등으로 구성된 메타데이터 구조를 보인 후, 멀티 에이전트의 협력을 통한 메타데이터의 생성과 갱신 및 적중 문건의 수에 따른 노드 이주 방법을 보인다.
조직 전반에 걸쳐 급격한 변화를 초래하는 경영혁신작업의 성공요인을 대기업에 비해 상대적으로 자금력, 기술력, 인적자원이 부족한 중소기업을 대상으로 실증적인 검증과정을 거쳐 성공요인을 분석하였다. 본 연구에서는 두 가지 목적이 있다. 첫째, 경영혁식작업을 성공적으로 이끄는 조직.관리적인 요인들을 조사했다. 분석대상요인들은 조직구조, 문화, 최고경영자의 의지 그리고 경영혁신작업을 지원하기 위한 관리제도상의 변화 등이 포함된다. 두 번째의 목적은 "상대적인 성공"과 "상대적인 실패" 집단으로 분류하여 조사된 성공요인 중에서 어느 요인이 핵심 성공요인인지를 나타내고자 한다. 또한 , 핵심성공요인으로 판별함수를 도출한 후 성공과 실패집단분류에 대한 적중률이 얼마나 되는지를 조사하였다. 한국의 44개 중소기업을 대상으로 한 연구결과, 성공요인으로는 자율적인 기업문화, 최고 경영자의 의지 그리고 관리제도상의 변화로 나타났다. 특히,최고 경영자의 의지와 관리제도상의변화가 핵심성공요인으로 확인되었다.의변화가 핵심성공요인으로 확인되었다.
이메일무단수집거부
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.