Most images are composed as union of the various objects which can describe meaning respectively. Unlike human perception, The general computer systems used for image processing analyze images based on low level features like color, texture and shape. The semantic gap between low level image features and the richness of user semantic knowledges can bring about unsatisfactory classification results from user expectation. In order to deal with this problem, we propose a semantic cue based image classification method using salient points from object of interest. Salient points are used to extract low level features from images and to link high level semantic concepts, and they represent distinct semantic information. The proposed algorithm can reduce semantic gap using salient points modeling which are used for image classification like human perception. and also it can improve classification accuracy of natural images according to their semantic concept relative to certain object information by using salient points. The experimental result shows both a high efficiency of the proposed methods and a good performance.
Journal of the Korea Institute of Information and Communication Engineering
/
v.11
no.1
/
pp.108-113
/
2007
The classification of fingerprint images is to classify fingerprint images into varies fingerprint types, it is very important in automatic fingerprint recognition. In this paper, a new singular points detection technique was presented. A direction uniform measure is defined to describe the changes of direction fields in a certain neighborhood of fingerprint images. Singular points can be detected by adopting the measure. It should be pointed out that singular points in accurate positions would be obtained in this ways. And an improved Poincare exponential algorithm is presented to identify core points and triangle points. In this paper. making use of 102 experimental fingerprint images datas and attained 7.8% classification errors. This was better than experimental result of abstract [9]. It is possible to use on-line fingerprint images classification.
The overall objective of this research was to investigate various combination of segmentation parameters and to improve classification accuracy of object-oriented classification. This research presents a method for evaluation of segmentation parameters by calculating Moran's I and Intrasegment Variance. This research used Landsat-7/ETM image of $11{\times}14$ Km developed area in Ansung, Korea. Segmented images are generated by 75 combinations of parameter. Selecting 7 combinations of high, middle and low grade expected classification accuracy was based on calculated Moran's I and Intrasegment Variance. Selected segmentation images are classified 4 classes and analyzed classification accuracy according to method of objected-oriented classification. The research result proved that classification accuracy is related to segmentation parameters. The case of high grade of expected classification accuracy showed more than 85% overall accuracy. On the other hand, low ado showed around 50% overall accuracy.
본 연구에서는 최대우도법과 인공신경망 모형에 의해 카테고리 분류를 수행하고 각각의 분류 성능을 비교 평가하였다. 인공신경망 모형은 오류역전파 알고리즘을 이용한 것으로서 학습을 통한 은닉층의 최적노드수를 결정하여 카테고리 분류를 수행하도록 하였다. 인공신경망 최적 모형은 입력층의 노드수가 7개, 은닉층의 최적노드수가 18개, 그리고 출력층의 노드수가 5개인 것으로 구성하였다. 위성영상은 1996년에 촬영된 Landsat TM-5 영상을 사용하였고, 최대우도법과 인공신경망 모형에 의한 카테고리 분류를 위하여 각각의 카테고리에 대한 분광특성을 대표하는 지역을 절취하였다. 분류 정확도는 인공신경망 모형에 의한 방법이 90%, 최대우도법이 83%로서, 인공신경망 모형의 분류 성능이 뛰어난 것으로 나타났다. 카테고리 분류 항목인 토지 피복 상태에 따른 분류는 두 가지 방법에서 밭과 주거지의 분류오차가 큰 것으로 나타났다. 특히, 최대우도법에 의한 밭에서의 태만오차는 62.6%로서 매우 큰 값을 보였다. 이는 밭이나 주거지의 특성이 위성영상 촬영시기에 따라 나지의 형태로 분류되거나 산림, 또는 논으로도 분류되는 경향이 있기 때문인 것으로 보인다. 차후에 카테고리 분류를 위한 각각의 클래스의 보조적인 정보를 추가한다면, 카테고리 분류 향상이 이루어질 것으로 기대된다.
Proceedings of the Korean Information Science Society Conference
/
2002.10d
/
pp.505-507
/
2002
본 논문에서는 그레이 블록 거리알고리즘(grey block algorithms, 이하 GBD)을 이용하여 독립성분분석(independent component analysis; 이하 ICA) 및 첨도(Kurtosis)에서의 영상간의 거리를 측정하여, 어느 정도 영상간의 상대적 식별을 용이하게 하여 영상 분류가 되는지 모의 실험을 통하여 확인하고자 한다. 모의 실험 결과로부터, ICA에서는 k는 8까지 상대적 식별이 되어 영상 분류가 되었고, 첨도에서는 영상간의 상대적 식별을 k가 4까지만 블록을 분할 할 수 있었다.
Proceedings of the Korean Information Science Society Conference
/
2001.10b
/
pp.349-351
/
2001
본 논문에서는 원 영상의 영역 분류와 웨이브렛 변환을 이용하여 영상의 밝기 변화에 관계없이 영상 검색이 가능한 알고리즘을 제안하였다. 이러한 방식을 통해 영상 전체에 대해 검색이 수행되지 않고, 영역 분류 결과인 블록맵과 변환 대역에서의 분산값 등 매우 소량의 정보만을 저장하고 이를 기반으로 영상 검색이 수행되므로 매우 빠르고 효과적인 검색이 가능함을 실험을 통해 확인하였다.
Proceedings of the Korea Multimedia Society Conference
/
2002.05c
/
pp.180-185
/
2002
본 논문에서는 키워드를 입력해 검색된 영상들을 유사한 특징을 갖는 소수의 그룹으로 그룹핑하고 각 그룹을 대표하는 대표영상을 추출하여 우선적으로 사용자에게 보여주고 필요에 따라 나머지 영상들을 단계적으로 서비스할 수 있는 방안을 제시한다. 영상 그룹핑을 위한 각 영상의 특징은 영상에 포함된 중심 객체를 사용하여 추출한다. 이를 위해 검색 키워드는 객체와 연관성이 있는 단어로 제한하여 영상을 검색하며 검색된 영상으로부터 중심 객체를 추출할 수 있는 객체 추출 방법을 활용하였다. 각 영상으로부터 추출된 중심 객체에 대한 특징 벡터는 칼라 분포를 이용한다. 영상 그룹핑은 칼라분포로 표현되는 특징공간에서의 밀집도를 조사하여 높은 밀도로 모여있는 영역별로 추출하여 동일한 그룹으로 분류하였다. 대표 영상은 분류된 그룹에서 가장 밀집도가 높은 영상으로 선택된다. 한편, 얼굴이 포함된 영상은 사전에 따로 분류하고 얼굴 크기 및 얼굴 수에 따라 영상을 그룹핑하여 각 그룹에 대한 대표 영상을 선정한다. 본 연구에서 제안한 방법은 사용자에게 모든 검색 결과를 일괄적으로 보여주는 것에 비해 보다 빠른 시간 내에 사용자가 원하는 영상을 편리하면서도 효과적으로 확인할 수 있는 방법을 제공해 줄 수 있을 것으로 기대한다.
To classifying and filtering of adult images, in recent the computer vision techniques are actively investigated because rapidly increase for the amount of adult images accessible on the Internet. In this paper, we investigate and develop the tool filtering of adult images using skin color model. The tool is consisting of two steps. In the first step, we use a skin color classifier to extract skin color regions from an image. In the nest step, we use a region feature classifier to determine whether an image is an adult image or not an adult image depending on extracted skin color regions. Using histogram color model, a skin color classifier is trained for RGB color values of adult images and not adult images. Using SVM, a region feature classifier is trained for skin color ratio on 29 regions of adult images. Experimental results show that suggested classifier achieve a detection rate of 92.80% with 6.73% false positives.
Lee, Guk-Hee;Li, Hyung-Chul O.;Ahn, Chung Hyun;Choi, Ji Hoon;Kim, ShinWoo
Proceedings of the Korean Society of Broadcast Engineers Conference
/
2013.06a
/
pp.229-232
/
2013
영상실감증대를 위한 시각, 청각정보의 제시방식에 대해서는 많은 진보가 이루어 졌다. 반면 후각은 정의하기 어렵고 다루기 까다롭기 때문에 관련연구를 찾아보기 어렵다. 본 연구에서는 후각정보를 통한 영상실감증대 연구의 첫걸음으로 후각정보에 대한 사용자 수용도를 조사한 후 이에 근거하여 다양한 영상을 분류하였다. 이를 위해 먼저 영상에 냄새가 존재하는지 (냄새존재여부), 영상과 함께 해당 냄새를 경험하고 싶은지 (냄새제시선호), 영상에 어울리는 냄새가 내가 좋아하는 냄새인지 (냄새자체선호), 그리고 영상에 어울리는 냄새가 얼마나 구체적인지 (냄새의 구체성)라는 네 가지 질문을 선정하였다. 각 질문들에 높은 혹은 낮은 점수를 받을 만한 다양한 장르의 영상 (51)개를 수집한 후, 참가자들에게 하나씩 영상을 시청하게 한 후 위의 네 가지 질문에 대해 7점 척도로 평정하게 하였다. 영상분류를 위해 두 질문씩 쌍으로 묶어 각 질문의 척도를 2차원 평면의 X, Y축으로 설정한 후 평정값을 이용하여 영상분류를 위한 산포도를 구성하였다. 2차원 평면의 서로 다른 사분면에 위치한 영상군집들은 영상실감증대를 위한 후각정보 제시에 중요한 시사점을 줄 것으로 기대한다.
Proceedings of the Korean Information Science Society Conference
/
2007.10c
/
pp.505-509
/
2007
색 변환(Color Transfer) 기법은 컴퓨터 비전 및 영상 처리 분야에서 점점 더 많은 연구가 되고 있는 분야이다. 이는 참조 영상의 분위기를 원본 영상에 반영하는 기법이다. 본 논문에서는 채도가 낮은 색상에서 나타나는 잘못된 연산 결과를 해결하기 위해 채도 문턱치에 따라 유채색과 무채색으로 분류하여 인덱싱 하고, Lab색 모델에서 색상 채널인 a, b를 사용하여 그림 영상에서의 색 변환하는 방법을 제안한다. 제안된 방법은 영상의 화소들의 채도 문턱치를 이용하여 유채색과 무채색으로 분류하는 단계, 분류된 화소들의 색 특성을 이용한 cylindrical metric를 이용한 인덱싱 하는 단계, 각 인덱스 내의 위치적 표준편차와 화소수를 이용하여 인덱스들의 우열을 가리는 단계, 인덱스들의 우세한 순서로 Lab 색 모델에서 a 채널과 b 채널을 이용하여 색 변환하는 단계 등 4단계로 구성된다. 실험결과는 제안한 방법이 무채색과 유채색이 잘 분류되어 인덱싱 되었음을 보이고 원본 영상의 색이 참조영상의 색으로 잘 변환된 것을 보인다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.