본 연구에서는 최대우도법과 인공신경망 모형에 의해 카테고리 분류를 수행하고 각각의 분류 성능을 비교 평가하였다. 인공신경망 모형은 오류역전파 알고리즘을 이용한 것으로서 학습을 통한 은닉층의 최적노드수를 결정하여 카테고리 분류를 수행하도록 하였다. 인공신경망 최적 모형은 입력층의 노드수가 7개, 은닉층의 최적노드수가 18개, 그리고 출력층의 노드수가 5개인 것으로 구성하였다. 위성영상은 1996년에 촬영된 Landsat TM-5 영상을 사용하였고, 최대우도법과 인공신경망 모형에 의한 카테고리 분류를 위하여 각각의 카테고리에 대한 분광특성을 대표하는 지역을 절취하였다. 분류 정확도는 인공신경망 모형에 의한 방법이 90%, 최대우도법이 83%로서, 인공신경망 모형의 분류 성능이 뛰어난 것으로 나타났다. 카테고리 분류 항목인 토지 피복 상태에 따른 분류는 두 가지 방법에서 밭과 주거지의 분류오차가 큰 것으로 나타났다. 특히, 최대우도법에 의한 밭에서의 태만오차는 62.6%로서 매우 큰 값을 보였다. 이는 밭이나 주거지의 특성이 위성영상 촬영시기에 따라 나지의 형태로 분류되거나 산림, 또는 논으로도 분류되는 경향이 있기 때문인 것으로 보인다. 차후에 카테고리 분류를 위한 각각의 클래스의 보조적인 정보를 추가한다면, 카테고리 분류 향상이 이루어질 것으로 기대된다.
Journal of the Korean Data and Information Science Society
/
제25권6호
/
pp.1371-1383
/
2014
분류 앙상블 모형이란 여러 분류기들의 예측 결과를 통합하여 더욱 정교한 예측성능을 가진 분류기를 만들기 위한 융합방법론이라 할 수 있다. 분류 앙상블을 구성하는 분류기들이 높은 예측 정확도를 가지고 있으면서 서로 상이한 모형으로 이루어져 있을 때 분류 앙상블 모형의 정확도가 높다고 알려져 있다. 하지만, 실제 분류 앙상블 모형에는 예측 정확도가 그다지 높지 않으며 서로 유사한 분류기도 포함되어 있기 마련이다. 따라서 분류 앙상블 모형을 구성하고 있는 여러 분류기들 중에서 서로 상이하면서도 정확도가 높은 것만을 선택하여 앙상블 모형을 구성해 보는 가지치기 방법을 생각할 수 있다. 본 연구에서는 Lasso 회귀분석 방법을 이용하여 분류기 중에 일부를 선택하여 모형을 만드는 방법과 가중 투표 앙상블 방법론의 하나인 WAVE-bagging을 이용하여 분류기 중 일부를 선택하는 앙상블 가지치기 방법을 비교하였다. 26개 자료에 대해 실험을 한 결과 WAVE-bagging 방법을 이용한 분류 앙상블 가지치기 방법이 Lasso-bagging을 이용한 방법보다 더 우수함을 보였다.
주문 검토 및 투입(ORR; Order Review/Release) 모형의 활발한 활용을 위해서는 ORR모형의 분석과, 사용 환경에 맞는 분류가 이뤄져야 한다. 본 논문은 ORR의 역할과 관련 패러독스를 소개하고, ORR의 DSS화를 위한 분류체계를 제시한다. "COMPACT(COMplexity-imPACT) 매트릭스"라 명명된 ORR모형 분류체계는 복잡성에 따라 모형을 분류하고 각 복잡성 단계에서 모형의 유효성을 평가한 결과물이다. 이 분류체계는 사용자가 설정한 복잡성 정도에 맞춰 효과적인 모형을 제시한다는 사상을 통해 ORR모형의 DSS화와 활용에 기여할 것이다.
최근 도시화 및 기후변화에 따른 재난의 피해가 증가하고 있다. 국내 기상청에서는 호우 및 태풍에 대한 예·경보(주의보, 경보)를 전국적으로 통일된 기준(3시간, 12시간 누적강우량)에 따라 발령하고 있다. 이에 따라 현재 예·경보 기준에는 피해가 발생한 사상에 대한 지역별 특성이 고려되지 않는 문제점이 있다. 본 연구에서는 이러한 문제점을 해결하기 위하여 서울특별시, 인천광역시, 경기도의 호우 및 태풍에 대한 재해사상별 발생한 피해액 및 누적강우량을 활용하여 재해강도의 단계별 기준을 수립하고, 입력자료로 관측된 강우값을 활용하여 발생할 수 있는 재해의 발생 강도를 분류하는 모형을 개발하고자 하였다. 본 연구에서는 호우 및 태풍에 의한 재해 피해액의 분위별로 재해강도 단계(관심, 주의, 경계, 심각)를 분류하였고, 재해강도 단계에 따른 누적강우량 기준을 지자체별로 제시하였으며, 분류한 재해의 강도 단계를 모형의 종속변수로 활용하였다. 재해피해가 발생하지 않은 무강우 지속시간을 산정하여 호우 사상을 분류하였다. 지자체별로 재해 발생강도 분류 모형 개발을 위하여 머신러닝 모형 4가지(의사결정나무, 서포트 벡터 머신, 랜덤 포레스트, XGBoost)를 활용하였다. 본 연구에서 분류한 피해가 발생하지 않은 호우사상 및 피해가 발생한 사상별로 강우량, 지속시간 최대 강우량(3시간, 12시간), 선행강우량, 누적강우량을 독립변수로 입력하여 종속변수인 재해 발생 강도를 분류하였다. 각 모형별로 F1 Score를 이용한 정확도 평가 결과, 의사결정나무의 F1 Score가 평균 0.56으로 가장 우수한 정확도를 가지는 것으로 평가되었다. 본 연구에서 제시하는 머신러닝 기반 재해 발생 강도 분류모형을 활용하면 호우 및 태풍에 의한 재해에 대하여 지자체별로 재해 발생 강도를 단계별로 파악할 수 있어, 재난 담당자들의 의사결정을 위한 참고 자료로 활용될 수 있을 것으로 판단된다.
Journal of the Korean Data and Information Science Society
/
제12권2호
/
pp.113-124
/
2001
의사결정나무모형 가운데 하나인 CHAID, 로지스틱 회귀모형, 이들을 이용한 각각의 베깅모형 등 4가지 예측분류모형에 대한 오분류율과 훈련시간을 표본크기별로 계산하고, 이들 모형에 대한 모의실험 비교를 통하여 주어진 알고리즘들의 효율성을 평가하였다. 베깅 의사결정나무모형은 오분류율은 낮았으나 상대적으로 훈련시간이 가장 길었다.
퍼지신경망 모형은 인공신경망의 네트워크 구조 표현방법 및 학습알고리듬과 퍼지시스템의 추론방법을 통합한 모형으로 제어 및 예측분야에 성공적으로 적용되고 있다. 본 연구에서는 퍼지신경망 모형 중 우수한 예측정확도로 인해 최근 각광받고 있는ANFIS (Adaptive Network-based Fuzzy Inference System)모형을 기반으로 하는 분류모형을 설계하고 기존의 분류기법(C5.0 의사결정나무)과 비교하여 분류 정확성 관점에서 평가한다. ANFIS 추론의 경우, 최종 결과값이 계급값이 아닌 연속형 변수값을 취하게 되므로 산출된 결과값을 이용하여 적절한 계급값을 할당하는 과정이 필요하다. 본 연구에서는 의사결정나무기법을 이용하여 계급값을 할당하는 방식과 군집분석을 이용하여 계급값을 할당하는 두 가지 방식을 제안하고 두 가지 데이터 세트에 적용하여 ANFIS를 기반으로 한 분류모형의 정확도를 평가하였다.
본 논문에서는 사상체질분류검사 설문지를 이용하여 사상체질을 진단할 때 진단의 정확도를 향상시키기 위한 사상체질 분류모형을 개발하기 위하여 데이터마이닝의 주요 분류기법인 판별분석(discriminant analysis), 의사결정나무(decision tree analysis), 신경망분석(neural network analysis), 로지스틱 회귀분석(logistic regression analysis), 군집분석(clustering analysis) 등 다양한 분류분석모형을 이용한다. 본 연구에서는 분류의 비교적 정확도가 우수하며, 특히 분석과정을 쉽게 이해하고 설명할 수 있다는 점과 구현이 용이하다는 장점을 가지고 있는 판별분석모형과 의사결정나무분석모형을 기반으로 사상체질 분류모형을 개발하고, 두 분류모형을 적용한 사상체질 진단시스템을 구현하였다.
인터넷에서 댓글 시스템은 자신의 의사표현을 위한 시스템으로 널리 사용되고 있다. 하지만 이를 악용하여 상대방에 대한 혐오를 드러내기도 한다. 악성댓글에 대한 적절한 대처를 위해 빠르고 정확한 탐지는 필수적이다. 본 연구에서는 악성 댓글 분류 문제를 해결하기 위해서 순서가 있는 분류 레이블의 성질을 활용한 순서형 회귀 (Ordinal regression) 기반의 분류 모델을 제안한다. 일반적인 분류 모형과는 달리 혐오 발언 정도에 따라 다중 레이블을 부여하여 학습을 진행하였다. 실험을 통해 Korean Hate Speech Dataset에 대해 LSTM기반의 모형의 출력층을 다르게 구성하여 순서형 회귀 기반의 모형들의 성능을 비교하였다. 결과적으로 예측 결과에 대한 조율이 가능한 순서형 회귀 모형이 일반적인 순서형 회귀 모형에 비해서 편향된 예측에 대해 추가적인 성능 향상을 보였다.
본 연구는 모든 지식조직체계의 근간인 용어관계가 동일성, 계층성, 연관성이라는 세 가지 포괄적인 기준에 의해 정의되어 사용됨으로써 정보의 정확성이 중시되는 오늘날의 정보 환경에서 제 기능을 다하지 못하고 있으므로, 그 해결 방안의 하나로 용어관계의 분류 모형을 제시하고자 하는데 목적이 있다. 이를 위해 기존의 여러 지식조직체계에 나타나는 각종 용어관계의 사례와 용어관계에 대한 이론적 연구들을 광범위하게 수집하여 다양한 용어관계의 유형을 파악하였다. 그리고 이를 바탕으로 용어관계를 명확하게 정의하고 범주화할 수 있는 용어관계 분류의 근거를 세우고 용어관계의 분류 모형을 개발하였다. 더 나아가 이 분류 모형을 정보검색을 비롯한 다양한 방면에 활용할 수 있는 방안을 모색하고 향후 용어관계 분류 연구에 대한 제언을 했다.
국제 표준인 ISO 15489와 관련코드에 따르면 공공조직이든 민간조직이든지를 막론하고 안정적인 기록물 분류체계를 구현하게 하는 기능 분류 사용을 권고하고 있다. 기업에서도 이를 따라 업무 수행 기록물을 분류 축적하여 검색 활용할 수 있는 체계를 구축하는 것은 기업 성장을 위해서 중요하다. 따라서 기업의 기록물 분류체계 개발에 적용할 수 있는 분류기준이나 개발 방법론 연구 및 모형의 연구가 반드시 필요하다. 본 연구에서는 우리나라 대기업 3개 회사와 중소기업 4개 회사 등 총 7개의 종합건설기업의 기록물 분류체계 사례연구를 통하여 분류체계의 내용을 비교 분석하였다. 사례연구를 통하여 도출한 분류원칙을 정리 종합하여 핵심적인 건설기록물 분류기준을 제시하고, 건설기록물 분류체계 모형을 도출하기 위하여 대기업 사례기업의 본사조직 및 프로젝트조직의 대분류 및 중분류 항목 구성을 상호 비교하면서 표준적인 본사조직 및 프로젝트조직 기록물 분류 항목을 도출하는 과정을 기술하고 그 결과로 개발된 건설기록물 분류체계 모형을 제시하였다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.