• Title/Summary/Keyword: 분류기 알고리즘

Search Result 599, Processing Time 0.023 seconds

Studies on the ecological variations of rice plant under the different seasonal cultures -II. A study on the year variations and prediction of heading dates of paddy rice under the different seasonal cultures- (재배시기 이동에 의한 수도의 생태변이에 관한 연구 -II. 재배시기 이동에 의한 수도출수기의 년차간변이와 그 조기예측-)

  • Hyun-Ok Choi
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.3
    • /
    • pp.41-48
    • /
    • 1965
  • This study was aimed at knowing the magnitude of year variation in rice heading dates under the different seasonal cultures, and to estimate the heading date in advance. Using six rice varieties such as Kwansan, Suwon#82, Suwon #144, Norin#17, Yukoo#132 and Paltal, the early, ordinary and late seasonal cultures had been carried out at Paddy Crop Division, Crop Experiment Station at Suwon for the six-year period 1959 to 1964. In addition the data of the standard rice cultures at the Provincial Offices of Rural Development for the 12-year period 1953 to 1954, were analyzed for the purpose of clarifying a relationship between variation of rice heading dates and some of meteorological data related to the locations and years. The results of this study are as follows: 1. Year variation of rice heading dates was as high as 14 to 21 days in the early seasonal culture and 7 to 14 days in the ordinary seasonal culture, while as low as one to seven days in the late seasonal culture which was the lowest among three cultures. The magnitude of variation depended greatly on variety, cultural season and location. 2. It was found out that there was a close negative correlation between the accumulated average air temperature for 40 days from 31 days after seeding and number of days to heading in the early seasonal culture. Accordingly, it was considered possible to predict the rice heading date through calculation of the accumulated average air temperature for the above period and then the linear regression(Y=a+bx). On the other hand, an estimation of the heading date in the late seasonal culture requires for the further studies. In the ordinary seasonal culture, no significant correlation between the accumulated average air temperature and number of days to heading was obtained in the six-year experiments conducted at Suwon. There was a varietal difference in relationship between the accumulated average air temperature for 70 days from seeding and number of days to heading in the standard cultures at the provincial offices of rural development. Some of varieties showed a significant correlation between two factors while the others didn't show any significant correlation. However, there was no regional difference in this relationship.

  • PDF

Development of 3D Radiation Position Identification System of Multiple Radiation Sources using Plastic Scintillator and NaI(TI) Detector (플라스틱 Scintillator와 NaI(TI) 검출기를 이용한 다수의 방사선원 위치를 3차원으로 판별하는 측정시스템 개발)

  • Kwak, Dong-Hoon;Ko, Tae-Young;Lee, Seung-Ho
    • Journal of IKEEE
    • /
    • v.22 no.3
    • /
    • pp.638-644
    • /
    • 2018
  • In this paper, we develop a measurement system that uses 3D Scintillator and NaI(TI) Detector to 3-dimensionally identify the location of multiple radiation sources in moving vehicle loads. The radiation measurement system consists of radiation measurement (plastic scintillator), 2-channel Pulse Counter Board, nuclide analysis (NaI(TI) detector) and 1 channel MCA Board. The source locator algorithm calculates the coordinate value of the ratio of the CPS value($1/r^2$) of the source according to the angle(${\theta}$) in inverse proportion to the square of the distance(X, Y) through the SVM classification. The coordinate values are input every predetermined period of the spectrum, and after analyzing the spectrum per unit cycle, the position of the nuclide at the time is calculated by determining whether or not the nuclide is present in the remaining part except for the background area. As a result of the position discrimination test, the error within the international standard of ${\pm}1m$ was shown. Thus, the utility of the proposed system has been demonstrated.

Development of an Automated Algorithm for Analyzing Rainfall Thresholds Triggering Landslide Based on AWS and AMOS

  • Donghyeon Kim;Song Eu;Kwangyoun Lee;Sukhee Yoon;Jongseo Lee;Donggeun Kim
    • Journal of the Korea Society of Computer and Information
    • /
    • v.29 no.9
    • /
    • pp.125-136
    • /
    • 2024
  • This study presents an automated Python algorithm for analyzing rainfall characteristics to establish critical rainfall thresholds as part of a landslide early warning system. Rainfall data were sourced from the Korea Meteorological Administration's Automatic Weather System (AWS) and the Korea Forest Service's Automatic Mountain Observation System (AMOS), while landslide data from 2020 to 2023 were gathered via the Life Safety Map. The algorithm involves three main steps: 1) processing rainfall data to correct inconsistencies and fill data gaps, 2) identifying the nearest observation station to each landslide location, and 3) conducting statistical analysis of rainfall characteristics. The analysis utilized power law and nonlinear regression, yielding an average R2 of 0.45 for the relationships between rainfall intensity-duration, effective rainfall-duration, antecedent rainfall-duration, and maximum hourly rainfall-duration. The critical thresholds identified were 0.9-1.4 mm/hr for rainfall intensity, 68.5-132.5 mm for effective rainfall, 81.6-151.1 mm for antecedent rainfall, and 17.5-26.5 mm for maximum hourly rainfall. Validation using AUC-ROC analysis showed a low AUC value of 0.5, highlighting the limitations of using rainfall data alone to predict landslides. Additionally, the algorithm's speed performance evaluation revealed a total processing time of 30 minutes, further emphasizing the limitations of relying solely on rainfall data for disaster prediction. However, to mitigate loss of life and property damage due to disasters, it is crucial to establish criteria using quantitative and easily interpretable methods. Thus, the algorithm developed in this study is expected to contribute to reducing damage by providing a quantitative evaluation of critical rainfall thresholds that trigger landslides.

Clothing Management System Using the Smart Hanger Embedded RFID (RFID가 내장된 스마트 옷걸이를 이용한 의류 관리 시스템)

  • Chung, Sung Boo
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.51 no.8
    • /
    • pp.185-194
    • /
    • 2014
  • In this paper, we proposed the clothing management system using the smart hanger. Proposed system consists of smart hanger, base module, and server, and the smart hanger consists of MCU, LED, RFID reader, RF chip, ring sensor, and battery. The smart hanger reads the RFID tag attached to the clothes and wirelessly transmitted to the server. The server associated base module communicates with the smart hanger and transmits information to the server. The server manages clothing through the DB, and can display various information through the web page and the smart phone. In order to verify the usefulness of the proposed system, we did experiment with the management system for clothing store and laundry where using a lot of hangers. Performance tests of the smart hanger are applied to check the current consumption and can be predicted the battery life with the proposed low power algorithm. The clothing store management system can be increased sales and convenience of the consumer. The laundry management system can be increased the efficiency of laundry category and convenience of the consumer.

Effective BER Measurement System for Terrestrial DMB (지상파 DMB를 위한 효율적인 비트오류율 측정시스템)

  • 김상훈;임중곤;김만식;이종화
    • Journal of Broadcast Engineering
    • /
    • v.8 no.3
    • /
    • pp.250-258
    • /
    • 2003
  • Recently, the transition from conventional analog broadcasting to digital broadcasting has been proceeding as a result of the advance in digital multimedia broadcasting technique. In radio broadcasting, Eureka-147 DAB(Digital Audio Broadcasting) was decided as the standard system of digital radio broadcasting in Korea. In addition to CD quality audio, a variety of data services and excellent performance in mobile reception can be served by DAB, and DAB was evolved into DMB(Digital Multimedia Broadcasting) in Korea for the purpose of emphasizing moving picture multimedia service by DAB. In case of digital broadcasting, it is absolutely essential to measure the BER(Bit Error Rate) in the received signal in order to evaluate the coverage obtained by a transmitter and the quality of the received signal. In this paper, we propose efficient subchannel data structure and BER measurement algorithm. and then verify it by laboratory experiments. With a proposed method, the synchronization for BER measurement is easily obtained and especially the exact results can be obtained by classifying the lost bits which are included in the reception-failed CIFs(Common Interleaved Frame) into errors. This makes the proposed BER measurement system especially appropriate to DMB in which the frequent changes in channel status caused by mobile reception environment exist.

A Study on Classification of Waveforms Using Manifold Embedding Based on Commute Time (컴뮤트 타임 기반의 다양체 임베딩을 이용한 파형 신호 인식에 관한 연구)

  • Hahn, Hee-Il
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.51 no.2
    • /
    • pp.148-155
    • /
    • 2014
  • In this paper a commute time embedding is implemented by organizing patches according to the graph-based metric, and its properties are investigated via changing the number of nodes on the graph.. It is shown that manifold embedding methods generate the intrinsic geometric structures when waveforms such as speech or music instrumental sound signals are embedded on the low dimensional Euclidean space. Basically manifold embedding algorithms only project the training samples on the graph into an embedding subspace but can not generalize the learning results to test samples. They are very effective for data clustering but are not appropriate for classification or recognition. In this paper a commute time guided transform is adopted to enhance the generalization ability and its performance is analyzed by applying it to the classification of 6 kinds of music instrumental sounds.

Automatic Color Palette Extraction for Paintings Using Color Grouping and Clustering (색상 그룹핑과 클러스터링을 이용한 회화 작품의 자동 팔레트 추출)

  • Lee, Ik-Ki;Lee, Chang-Ha;Park, Jae-Hwa
    • Journal of KIISE:Computer Systems and Theory
    • /
    • v.35 no.7
    • /
    • pp.340-353
    • /
    • 2008
  • A computational color palette extraction model is introduced to describe paint brush objectively and efficiently. In this model, a color palette is defined as a minimum set of colors in which a painting can be displayed within error allowance and extracted by the two step processing of color grouping and major color extraction. The color grouping controls the resolution of colors adaptively and produces a basic color set of given painting images. The final palette is obtained from the basic color set by applying weighted k-means clustering algorithm. The extracted palettes from several famous painters are displayed in a 3-D color space to show the distinctive palette styles using RGB and CIE LAB color models individually. And the two experiments of painter classification and color transform of photographic image has been done to check the performance of the proposed method. The results shows the possibility that the proposed palette model can be a computational color analysis metric to describe the paint brush, and can be a color transform tool for computer graphics.

An explosive gas recognition system using neural networks (신경회로망을 이용한 폭발성 가스 인식 시스템)

  • Ban, Sang-Woo;Cho, Jun-Ki;Lee, Min-Ho;Lee, Dae-Sik;Jung, Ho-Yong;Huh, Jeung-Soo;lee, Duk-Dong
    • Journal of Sensor Science and Technology
    • /
    • v.8 no.6
    • /
    • pp.461-468
    • /
    • 1999
  • In this paper, we have implemented a gas recognition system for classification and identification of explosive gases such as methane, propane, and butane using a sensor array and an artificial neural network. Such explosive gases which can be usually detected in the oil factory and LPG pipeline are very dangerous for a human being. We analyzed the characteristics of a multi-dimensional sensor signals obtained from the nine sensors using the principal component analysis(PCA) technique. Also, we implemented a gas pattern recognizer using a multi-layer neural network with error back propagation learning algorithm, which can classify and identify the sorts of gases and concentrations for each gas. The simulation and experimental results show that the proposed gas recognition system is effective to identify the explosive gases. And also, we used DSP board(TMS320C31) to implement the proposed gas recognition system using the neural network for real time processing.

  • PDF

The Characteristics of Visible Reflectance and Infra Red Band over Snow Cover Area (적설역에서 나타나는 적외 휘도온도와 반사도 특성)

  • Yeom, Jong-Min;Han, Kyung-Soo;Lee, Ga-Lam
    • Korean Journal of Remote Sensing
    • /
    • v.25 no.2
    • /
    • pp.193-203
    • /
    • 2009
  • Snow cover is one of the important parameters since it determines surface energy balance and its variation. To classify snow and cloud from satellite data is very important process when inferring land surface information. Generally, misclassified cloud and snow pixel can lead directly to error factor for retrieval of surface products from satellite data. Therefore, in this study, we perform algorithm for detecting snow cover area with remote sensing data. We just utilize visible reflectance, and infrared channels rather than using NDSI (Normalized Difference Snow Index) which is one of optimized methods to detect snow cover. Because COMS MI (Meteorological Imager) channels doesn't include near infra-red, which is used to produce NDSI. Detecting snow cover with visible channel is well performed over clear sky area, but it is difficult to discriminate snow cover from mixed cloudy pixels. To improve those detecting abilities, brightness temperature difference (BTD) between 11 and 3.7 is used for snow detection. BTD method shows improved results than using only visible channel.

A Study on the Complementary Method of Aerial Image Learning Dataset Using Cycle Generative Adversarial Network (CycleGAN을 활용한 항공영상 학습 데이터 셋 보완 기법에 관한 연구)

  • Choi, Hyeoung Wook;Lee, Seung Hyeon;Kim, Hyeong Hun;Suh, Yong Cheol
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.38 no.6
    • /
    • pp.499-509
    • /
    • 2020
  • This study explores how to build object classification learning data based on artificial intelligence. The data has been investigated recently in image classification fields and, in turn, has a great potential to use. In order to recognize and extract relatively accurate objects using artificial intelligence, a large amount of learning data is required to be used in artificial intelligence algorithms. However, currently, there are not enough datasets for object recognition learning to share and utilize. In addition, generating data requires long hours of work, high expenses and labor. Therefore, in the present study, a small amount of initial aerial image learning data was used in the GAN (Generative Adversarial Network)-based generator network in order to establish image learning data. Moreover, the experiment also evaluated its quality in order to utilize additional learning datasets. The method of oversampling learning data using GAN can complement the amount of learning data, which have a crucial influence on deep learning data. As a result, this method is expected to be effective particularly with insufficient initial datasets.