• 제목/요약/키워드: 분류기 알고리즘

검색결과 599건 처리시간 0.022초

한국어 문법검사기에서 의미정보를 이용한 복합명사의 분석제약 (To Constrain Korean Compound Nouns using Semantic Information for Korean Grammar Checker)

  • 원상연;김수남;김광영;남현숙;권혁철
    • 한국정보과학회 언어공학연구회:학술대회논문집(한글 및 한국어 정보처리)
    • /
    • 한국정보과학회언어공학연구회 1999년도 제11회 한글 및 한국어 정보처리 학술대회
    • /
    • pp.288-293
    • /
    • 1999
  • 일반적으로 두 개의 명사가 결합하여 하나의 명사 기능을 하는 어구를 복합명사라고 한다. 한국어는 복합명사 내의 명사를 붙여볼 수도 있고 띄어쓸 수도 있으므로 복합명사의 형태적 분석에 많은 어려움이 있다. 이 연구에서는 각 명사의 복합명사 결합을 최대한 제약하여 문법검사기에서 복합명사와 관련된 오류의 발생을 최소화할 수 있는 방범을 개발했다. 이 논문에서 복합명사 분석 기능을 제약하는 방법으로 형태적 제약 방법과 의미정보에 따라 복합명사의 결합관계를 제약하는 방법을 이용했다. 어휘 정보만으로 복합명사를 분석하면 의미관계에 의한 오류는 찾기 어려우므로 복합명사의 구조적 결합관계와 의미 결합관계를 밝혀 복합명사를 잘못 분석하는 문제점을 극복한다. 복합명사의 결합제약은 명사의 왼쪽과 오른쪽에 올 수 있거나 올 수 없는 명사를 의미, 형태적 특성과 명사가 나타나는 분포(distribution)에 따라 분류하여 규칙베이스화하였다. 의미정보를 이용한 복합명사 결합제약 알고리즘도 구현하였다.

  • PDF

신경회로망을 이용한 지능형 가공 시스템 제어기 구현 (An Implementation of the Controller for Intelligent Process System using Neural Network)

  • 김관형;강성인;이태오
    • 한국정보통신학회논문지
    • /
    • 제8권6호
    • /
    • pp.1135-1141
    • /
    • 2004
  • 본 논문은 신경회로망의 학습 알고리즘과 패턴인식을 위한 신경회로망 모델을 논의하였고, 생산가공 시스템에서의 광량 센서에 대한 물체 검출, 신경회로망을 이용한 패턴 분류, 마이크로 컨트롤러 시스템 그리고 DC 서보 모터의 제어기 설계에 대하여 논의하였다. 본 논문은 제시된 시스템의 구조를 기반으로 생선의 아가미와 꼬리 부분을 절단하는 어류 가공 시스템에 적용하여 실험하였고, 산업현장에 응용할 수 있는 지능제어시스템의 성능을 그 결과로 제시하였다.

433 MHz 대역 송신기의 인증을 위한 RF 지문 기법 (RF Fingerprinting Scheme for Authenticating 433MHz Band Transmitters)

  • 김영민;이웅섭;김성환
    • 한국정보통신학회논문지
    • /
    • 제27권1호
    • /
    • pp.69-75
    • /
    • 2023
  • 사물인터넷에 사용되는 소형 통신 기기들은 적은 메모리 용량과 느린 연산 속도 때문에 고급 암호기법을 적용하지 못하기 때문에 각종 해킹에 취약하다. 본 논문은 433MHz 대역에서 동작하는 소형 송신기들의 인증 신뢰도를 높이기 위해 RF지문을 도입하고 분류 알고리즘으로 CNN (convolutional neural network) 을 사용한다. 각 송신기가 전송하는 프리엠블 신호를 소프트웨어정의라디오를 사용하여 추출하고 수집하여 학습 데이터 집합으로 만들고, 이를 신경망을 학습시키는 데에 사용한다. 네 가지의 시나리오에서 20개의 송신기의 식별을 테스트한 결과 높은 식별 정확도를 얻을 수 있었다. 특히 학습 데이터 수집 시의 위치와 다른 위치에서 테스트를 수행한 시나리오에서, 그리고 송신기가 걷는 속도로 이동하는 시나리오에서 각각 95.8%, 92.6%의 정확도를 산출함을 알 수 있었다.

젤라틴 캡슐의 분류를 위한 에지 기반 방법 성능 평가 (Performance evaluation of Edge-based Method for classification of Gelatin Capsules)

  • 권기현;최인수
    • 디지털콘텐츠학회 논문지
    • /
    • 제18권1호
    • /
    • pp.159-165
    • /
    • 2017
  • 태블릿 캡슐의 품질 검사를 자동으로 해내기 위해서는 효율적인 이미지 처리기법, 적절한 임계치 설정, 에지 검출 그리고 세그멘테이션 방법 등이 필요하다. 그리고 기 존재하는 태블릿 캡슐의 품질 자동 검사 장비는 매우 고가이므로 품질 검사의 용이성을 높이기 위해서 저가의 하드웨어 시스템이 도입 되어야하다. 본 연구에서는 저가 카메라 모듈을 사용하여 이미지를 취득하고 전최소자승법 커브 피팅, 에지기반 이미지 세그멘테이션 방법을 사용하여 태블릿 캡슐의 함몰을 검사한다. 제안한 방법의 성능을 보이기 위해서 주요 분류 알고리즘인 PCA, ICA, SVM 방법을 사용하여 캡슐이미지 영역 데이터세트와 커브 피팅 에지 데이터세트에 대하여 훈련시간, 테스트시간 그리고 분류 정확도를 구하였다.

GPU를 이용한 야간 보행자 검출과 추적 시스템 구현 (Implementation of Pedestrian Detection and Tracking with GPU at Night-time)

  • 최범준;윤병우;송종관;박장식
    • 방송공학회논문지
    • /
    • 제20권3호
    • /
    • pp.421-429
    • /
    • 2015
  • 이 논문은 적외선 영상을 이용하여 보행자를 검출하고 추적하는 방법에 관한 것이다. 영상기반 보행 검출 및 추적 처리 속도를 개선하기 위하여 병렬처리언어인 CUDA(Computer Unified Device Architecture)를 활용한다. 보행자 검출은 하르 유사 특징을 기반으로 Adaboost 알고리즘을 적용한다. Adaboost 분류는 적외선 영상으로 제작한 데이터셋을 이용하여 훈련한다. Adaboost 분류기로 보행자를 검출한 후, HSV 히스토그램을 특징점으로 파티클 필터를 이용하여 보행자를 추적하는 방법을 제안한다. 제안하는 검출 및 추적 방법을 Linux 환경에서 소프트웨어를 개발할 수 있는 NVIDIA의 Jetson TK1 개발보드 상에 구현하였다. 이 논문에서는 보행자 검출 및 추적을 CUDA 개발환경인 GPU를 이용하여 병렬처리한 결과를 나타내었다. GPU를 이용한 보행자 검출과 추적 처리 속도가 CPU 처리속도에 비하여 약 6 배 빠른 것을 확인할 수 있다.

스마트폰을 이용한 SVM 기반 망막 질병 진단을 위한 지능적인 의사 결정 지원 시스템 (An Intelligent Decision Support System for Retinal Disease Diagnosis based on SVM using a Smartphone)

  • 이병관;정은희;유슬리나 티파니
    • 한국정보전자통신기술학회논문지
    • /
    • 제8권5호
    • /
    • pp.373-383
    • /
    • 2015
  • 이 논문은 망막 질병을 인지하기 위한 의사결정 지원 시스템을 제안한다. 이 논문은 시스템의 기초로써 스마트 폰 플랫폼과 클라우드 컴퓨팅을 사용한다. 마이크로 렌즈는 사용자의 망막 상태를 인지하기 위해 사용자 망막 이미지를 캡쳐 할 수 있도록 스마트 폰 카메라에 부착되어 있다. 어플리케이션은 컴퓨터에서 생성된 후에 스마트 폰에 설치된다. 이 어플리케이션의 역할은 스마트 폰에 있는 시스템과 클라우드에 있는 시스템 사이를 연결시키는 것으로, 어플리케이션은 분류하기 위해 클라우드 시스템에 망막 이미지를 전송하는 것이다. 이 논문은 분류기로써 OCFE 알고리즘을 사용한다. 망막 이미지는 두 개의 안과학 데이터베이스 DIARETDB1 v2.1과 STARE의 조합을 사용하여 실험하였다. 그리하여 평균 에러율을 12%인 반면에, 이 시스템 평균 정확도는 88%로 나타났다.

표정별 가버 웨이블릿 주성분특징을 이용한 실시간 표정 인식 시스템 (Real-time Recognition System of Facial Expressions Using Principal Component of Gabor-wavelet Features)

  • 윤현섭;한영준;한헌수
    • 한국지능시스템학회논문지
    • /
    • 제19권6호
    • /
    • pp.821-827
    • /
    • 2009
  • 표정은 인간의 감정을 전달할 수 있는 중요한 수단으로 표정 인식은 감정상태를 알아낼 수 있는 효과적인 방법중 하나이다. 일반적인 표정 인식 시스템은 얼굴 표정을 표현하는 특징점을 찾고, 물리적인 해석 없이 특징을 추출한다. 하지만 특징점 추출은 많은 시간이 소요될 뿐 아니라 특징점의 정확한 위치를 추정하기 어렵다. 그리고 표정 인식 시스템을 실시간 임베디드 시스템에서 구현하기 위해서는 알고리즘을 간략화하고 자원 사용량을 줄일 필요가 있다. 본 논문에서 제안하는 실시간 표정 인식 시스템은 격자점 위치에서 얻어진 가버 웨이블릿(Gabor wavelet) 특징 기반 표정 공간을 설정하고, 각 표정 공간에서 얻어진 주성분을 신경망 분류기를 이용하여 얼굴 표정을 분류한다. 제안하는 실시간 표정 인식 시스템은 화남, 행복, 평온, 슬픔 그리고 놀람의 5가지 표정이 인식 가능하며, 다양한 실험에서 평균 10.25ms의 수행시간, 그리고 87%~93%의 인식 성능을 보였다.

인쇄된 한글 문서의 폰트 인식 (The Font Recognition of Printed Hangul Documents)

  • 박문호;손영우;김석태;남궁재찬
    • 한국정보처리학회논문지
    • /
    • 제4권8호
    • /
    • pp.2017-2024
    • /
    • 1997
  • 본 논문은 새로운 형태의 문서 통신 방식인 지적 커뮤니케이션 시스템(IICS : Intelligent Image Communication System)의 구현을 위하여 한글 문서를 대상으로 문서를 구성하는 문자의 서체와 문자의 크기 및 기울기를 인식하고 방법을 제안한다. 서체를 인식하기 위하여 문서에서 일정한 크기의 블럭을 추출하여 주파수 분석을 하였고, 단어의 외접 사각형의 수직 거리를 이용하여 문자의 크기를 인식하였다. 문자의 기울기를 인식하기 위하여 수직 방향의 투영 프로파일을 이용하였다. 서체 인식을 위한 인식기의 가변적인 히든 노드를 이용하여 오류 역전파 알고리즘으로 학습된 MLP(Multi-layer Perceptron)를 사용하였으며, 문자의 크기와 기울기를 분류하기 위하여 Mahalanobis distance를 이용하였다. 실험을 통하여 서체 분류는 10개의 서체에 대하여 평균 95.19%의 인식률을 얻었고, 문자의 크기 분류는 5가지의 문자 크기에 대하여 평균 97.34%의 인식률을 얻었으며, 문자의 기울기는 평균 89.09%의 인식률을 얻음으로써 제안된 방법의 유용성을 입증하였다.

  • PDF

SIFT 기술자를 이용한 얼굴 표정인식 (Facial Expression Recognition Using SIFT Descriptor)

  • 김동주;이상헌;손명규
    • 정보처리학회논문지:소프트웨어 및 데이터공학
    • /
    • 제5권2호
    • /
    • pp.89-94
    • /
    • 2016
  • 본 논문에서는 SIFT 기술자를 이용한 얼굴 특징과 SVM 분류기로 표정인식을 수행하는 방법에 대하여 제안한다. 기존 SIFT 기술자는 물체 인식 분야에 있어 키포인트 검출 후, 검출된 키포인트에 대한 특징 기술자로써 주로 사용되나, 본 논문에서는 SIFT 기술자를 얼굴 표정인식의 특징벡터로써 적용하였다. 표정인식을 위한 특징은 키포인트 검출 과정 없이 얼굴영상을 서브 블록 영상으로 나누고 각 서브 블록 영상에 SIFT 기술자를 적용하여 계산되며, 표정분류는 SVM 알고리즘으로 수행된다. 성능평가는 기존의 LBP 및 LDP와 같은 이진패턴 특징기반의 표정인식 방법과 비교 수행되었으며, 실험에는 공인 CK 데이터베이스와 JAFFE 데이터베이스를 사용하였다. 실험결과, SIFT 기술자를 이용한 제안방법은 기존방법보다 CK 데이터베이스에서 6.06%의 향상된 인식결과를 보였으며, JAFFE 데이터베이스에서는 3.87%의 성능향상을 보였다.

음성신호 기반의 성별인식을 위한 Support Vector Machines의 적용 (Voice-Based Gender Identification Employing Support Vector Machines)

  • 이계환;강상익;김덕환;장준혁
    • 한국음향학회지
    • /
    • 제26권2호
    • /
    • pp.75-79
    • /
    • 2007
  • 본 논문은 SVM(Support Vector Machines)을 이용한 음성신호 기반의 효과적인 성별인식 시스템을 제안한다. 분별적 이진(binary) 패턴 분류기인 SVM은 특징 공간에서 비선형 경계를 찾아 분류하는 방법으로 우수한 성능을 보인다고 알려져 있다. 연구에서는 기존의 성별인식에서 널리 쓰이고 있는 MFCC(Mel Frequency Cepstral Coefficients)를 사용하여 SVM과 기존의 GMM(Gaussian Mixture Model) 알고리즘의 성별인식 성능을 비교하였고, 특히, 보다 향상된 SVM의 성별인식을 위해 MFCC와 Pitch를 이용한 결합 특징 벡터를 적용하였다. 실험결과 MFCC 파라미터를 사용했을 때 제안된 SVM이 GMM보다 우수한 성별인식 성능을 보였고, 제안된 결합 특징 벡터를 사용 했을 때 우수한 성능을 보였다.