• 제목/요약/키워드: 분류기 알고리즘

검색결과 599건 처리시간 0.032초

Classification of Imbalanced Data Using Multilayer Perceptrons (다층퍼셉트론에 의한 불균현 데이터의 학습 방법)

  • Oh, Sang-Hoon
    • The Journal of the Korea Contents Association
    • /
    • 제9권7호
    • /
    • pp.141-148
    • /
    • 2009
  • Recently there have been many research efforts focused on imbalanced data classification problems, since they are pervasive but hard to be solved. Approaches to the imbalanced data problems can be categorized into data level approach using re-sampling, algorithmic level one using cost functions, and ensembles of basic classifiers for performance improvement. As an algorithmic level approach, this paper proposes to use multilayer perceptrons with higher-order error functions. The error functions intensify the training of minority class patterns and weaken the training of majority class patterns. Mammography and thyroid data-sets are used to verify the superiority of the proposed method over the other methods such as mean-squared error, two-phase, and threshold moving methods.

Development of Remote Supervision System for Guam Lamps by Way of Leakage Current(Igr) Detection Method (보안등 전거설비의 Igr 누설전류 검출 및 원격감시장치 개발)

  • Choi, Myeong-Il;Kim, Young-Seok;Kim, Chong-Min;Bang, Sun-Bae
    • Journal of the Korean Society of Safety
    • /
    • 제25권6호
    • /
    • pp.75-80
    • /
    • 2010
  • The present study presented the implementation of a remote control/supervision system for guard lamps used in public illumination with little endeavor by far for safe management, which makes possible to supervise the state and to control the functions remotely including electric safety elements. Especially, the developed system adopts the measurement algorithm for detecting resistive leakage current(Igr) flowing based on the phase difference checkable for sensing at a monitor, being allowable for monitoring at MMI and transmitter for data transmittance. To verify reliability about the algorithm to accurately detect Igr leakage current, the laboratory-based functional test was performed.

Keyword Weight based Paragraph Extraction Algorithm (키워드 가중치 기반 문단 추출 알고리즘)

  • Lee, Jongwon;Joo, Sangwoong;Lee, Hyunju;Jung, Hoekyung
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 한국정보통신학회 2017년도 추계학술대회
    • /
    • pp.504-505
    • /
    • 2017
  • Existing morpheme analyzers classify the words used in writing documents. A system for extracting sentences and paragraphs based on a morpheme analyzer is being developed. However, there are very few systems that compress documents and extract important paragraphs. The algorithm proposed in this paper calculates the weights of the keyword written in the document and extracts the paragraphs containing the keyword. Users can reduce the time to understand the document by reading the paragraphs containing the keyword without reading the entire document. In addition, since the number of extracted paragraphs differs according to the number of keyword used in the search, the user can search various patterns compared to the existing system.

  • PDF

FPGA Design and Sync-Word Detection of CATV Down-Link Stream Transmission System (CATV 하향 스트림 적용 시스템에서 동기 검출 방안 및 FPGA 설계)

  • Kim, Min-Hyuk;Park, Tae-Doo;Kim, Nam-Soo;Kim, Chul-Seung;Jung, Ji-Won
    • Annual Conference of KIPS
    • /
    • 한국정보처리학회 2009년도 춘계학술발표대회
    • /
    • pp.1277-1280
    • /
    • 2009
  • 본 논문은 ITU-T 권고안 J-38 부록 B에 명시된 전송방식의 분석 및 시뮬레이션을 토대로 성능을 분석 하였으며 FPGA 구현시 야기되는 문제점을 나타내고, 해결방안을 제시하였다. 구현상의 문제점으로는 크게 두 가지로 분류되는데, 첫째로 다양한 부호화 방식과 변조방식 그리고 심볼 단위 및 비트 단위의 처리로 인해 많은 클럭수를 요구하는데 본 논문에서는 읽기/쓰기 메모리를 이용하여 필요한 클럭수를 줄였다. 둘째로는 펑쳐링 부호화된 TCM 복호기에 펑처링 패턴에 정확한 동기를 얻지 못하면 프레임 동기 심볼인 UW(Unique sync-Word)를 획득하지 못하여 모든 데이터가 에러 처리되기 때문에 본 논문에서는 펑처링 패턴과 UW 심볼의 동기를 맞추는 알고리즘을 제시하였다. 이러한 알고리즘 분석 및 구현상의 문제점 해결을 토대로 본 논문에서는 ITU-T J38 annex B의 하향 스트림 채널 부호화 시스템을 VHDL 언어를 사용하여 FPGA 칩에 직접 구현하였다.

Design of Optimized pRBFNNs-based Night Vision Face Recognition System Using PCA Algorithm (PCA알고리즘을 이용한 최적 pRBFNNs 기반 나이트비전 얼굴인식 시스템 설계)

  • Oh, Sung-Kwun;Jang, Byoung-Hee
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • 제50권1호
    • /
    • pp.225-231
    • /
    • 2013
  • In this study, we propose the design of optimized pRBFNNs-based night vision face recognition system using PCA algorithm. It is difficalt to obtain images using CCD camera due to low brightness under surround condition without lighting. The quality of the images distorted by low illuminance is improved by using night vision camera and histogram equalization. Ada-Boost algorithm also is used for the detection of face image between face and non-face image area. The dimension of the obtained image data is reduced to low dimension using PCA method. Also we introduce the pRBFNNs as recognition module. The proposed pRBFNNs consists of three functional modules such as the condition part, the conclusion part, and the inference part. In the condition part of fuzzy rules, input space is partitioned by using Fuzzy C-Means clustering. In the conclusion part of rules, the connection weights of pRBFNNs is represented as three kinds of polynomials such as linear, quadratic, and modified quadratic. The essential design parameters of the networks are optimized by means of Differential Evolution.

Vehicle Headlight and Taillight Recognition in Nighttime using Low-Exposure Camera and Wavelet-based Random Forest (저노출 카메라와 웨이블릿 기반 랜덤 포레스트를 이용한 야간 자동차 전조등 및 후미등 인식)

  • Heo, Duyoung;Kim, Sang Jun;Kwak, Choong Sub;Nam, Jae-Yeal;Ko, Byoung Chul
    • Journal of Broadcast Engineering
    • /
    • 제22권3호
    • /
    • pp.282-294
    • /
    • 2017
  • In this paper, we propose a novel intelligent headlight control (IHC) system which is durable to various road lights and camera movement caused by vehicle driving. For detecting candidate light blobs, the region of interest (ROI) is decided as front ROI (FROI) and back ROI (BROI) by considering the camera geometry based on perspective range estimation model. Then, light blobs such as headlights, taillights of vehicles, reflection light as well as the surrounding road lighting are segmented using two different adaptive thresholding. From the number of segmented blobs, taillights are first detected using the redness checking and random forest classifier based on Haar-like feature. For the headlight and taillight classification, we use the random forest instead of popular support vector machine or convolutional neural networks for supporting fast learning and testing in real-life applications. Pairing is performed by using the predefined geometric rules, such as vertical coordinate similarity and association check between blobs. The proposed algorithm was successfully applied to various driving sequences in night-time, and the results show that the performance of the proposed algorithms is better than that of recent related works.

Design of Automatic Classification System of Black Plastics Based on Support Vector Machine Using Raman Spectroscopy (라만분광법을 이용한 SVM 기반 흑색 플라스틱 자동 분류 시스템의 설계)

  • Bae, Jong-Soo;Oh, Sung-Kwun;Kim, Hyun-Ki
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • 제26권5호
    • /
    • pp.416-422
    • /
    • 2016
  • Lots of plastics are widely used in a variety of industrial field. And the amount of plastic waste is massively produced. In the study of waste recycling, it is emerged as an important issue to prevent the waste of potentially useful resource materials as well as to reduce ecological damage. So, the recycling of plastic waste has been currently paid attention to from the view point of reuse. Existing automatic sorting system consist of near infrared ray (NIR) sensors to classify the types of plastics. But the classification of black plastics still remains a challenge. Black plastics which contains carbon black are not almost classified by NIR because of the characteristic of the light absorption of black plastics. This study is focused on handling how to identify black plastics instead of NIR. Raman spectroscopy is used to get qualitative as well as quantitative analysis of black plastics. In order to improve the performance of identification, Support Vector Machine(SVM) classifier and Principal Component Analysis(PCA) are exploited to more preferably classify some kinds of the black plastics, and to analyze the characteristic of each data.

An Efficient Wireless Signal Classification Based on Data Augmentation (데이터 증강 기반 효율적인 무선 신호 분류 연구 )

  • Sangsoon Lim
    • Journal of Platform Technology
    • /
    • 제10권4호
    • /
    • pp.47-55
    • /
    • 2022
  • Recently, diverse devices using different wireless technologies are gradually increasing in the IoT environment. In particular, it is essential to design an efficient feature extraction approach and detect the exact types of radio signals in order to accurately identify various radio signal modulation techniques. However, it is difficult to gather labeled wireless signal in a real environment due to the complexity of the process. In addition, various learning techniques based on deep learning have been proposed for wireless signal classification. In the case of deep learning, if the training dataset is not enough, it frequently meets the overfitting problem, which causes performance degradation of wireless signal classification techniques using deep learning models. In this paper, we propose a generative adversarial network(GAN) based on data augmentation techniques to improve classification performance when various wireless signals exist. When there are various types of wireless signals to be classified, if the amount of data representing a specific radio signal is small or unbalanced, the proposed solution is used to increase the amount of data related to the required wireless signal. In order to verify the validity of the proposed data augmentation algorithm, we generated the additional data for the specific wireless signal and implemented a CNN and LSTM-based wireless signal classifier based on the result of balancing. The experimental results show that the classification accuracy of the proposed solution is higher than when the data is unbalanced.

Tomato Crop Diseases Classification Models Using Deep CNN-based Architectures (심층 CNN 기반 구조를 이용한 토마토 작물 병해충 분류 모델)

  • Kim, Sam-Keun;Ahn, Jae-Geun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • 제22권5호
    • /
    • pp.7-14
    • /
    • 2021
  • Tomato crops are highly affected by tomato diseases, and if not prevented, a disease can cause severe losses for the agricultural economy. Therefore, there is a need for a system that quickly and accurately diagnoses various tomato diseases. In this paper, we propose a system that classifies nine diseases as well as healthy tomato plants by applying various pretrained deep learning-based CNN models trained on an ImageNet dataset. The tomato leaf image dataset obtained from PlantVillage is provided as input to ResNet, Xception, and DenseNet, which have deep learning-based CNN architectures. The proposed models were constructed by adding a top-level classifier to the basic CNN model, and they were trained by applying a 5-fold cross-validation strategy. All three of the proposed models were trained in two stages: transfer learning (which freezes the layers of the basic CNN model and then trains only the top-level classifiers), and fine-tuned learning (which sets the learning rate to a very small number and trains after unfreezing basic CNN layers). SGD, RMSprop, and Adam were applied as optimization algorithms. The experimental results show that the DenseNet CNN model to which the RMSprop algorithm was applied output the best results, with 98.63% accuracy.

A Method to Find Feature Set for Detecting Various Denial Service Attacks in Power Grid (전력망에서의 다양한 서비스 거부 공격 탐지 위한 특징 선택 방법)

  • Lee, DongHwi;Kim, Young-Dae;Park, Woo-Bin;Kim, Joon-Seok;Kang, Seung-Ho
    • KEPCO Journal on Electric Power and Energy
    • /
    • 제2권2호
    • /
    • pp.311-316
    • /
    • 2016
  • Network intrusion detection system based on machine learning method such as artificial neural network is quite dependent on the selected features in terms of accuracy and efficiency. Nevertheless, choosing the optimal combination of features, which guarantees accuracy and efficienty, from generally used many features to detect network intrusion requires extensive computing resources. In this paper, we deal with a optimal feature selection problem to determine 6 denial service attacks and normal usage provided by NSL-KDD data. We propose a optimal feature selection algorithm. Proposed algorithm is based on the multi-start local search algorithm, one of representative meta-heuristic algorithm for solving optimization problem. In order to evaluate the performance of our proposed algorithm, comparison with a case of all 41 features used against NSL-KDD data is conducted. In addtion, comparisons between 3 well-known machine learning methods (multi-layer perceptron., Bayes classifier, and Support vector machine) are performed to find a machine learning method which shows the best performance combined with the proposed feature selection method.