References
- P. Kang and S. Cho, "EUS SVMs: Ensemble of under-sampled SVMs for data imbalance problems," Proc. ICONIP 2006, pp.837-846.
- M. Kubat, R. C. Hilte, and S. Matwin, "Machine learning for the detection of oil spills in satellite radar images," Machine Learning, Vol.30, pp.195-215, 1998. https://doi.org/10.1023/A:1007452223027
- L. Bruzzone and S. B. Serpico, "Classification of imbalanced remote-sensing data by neural networks," Pattern Recognition Letters, Vol.18, pp.1323-1328, 1997. https://doi.org/10.1016/S0167-8655(97)00109-8
- Y.-M. Huang, C.-M. Hung, and H. C. Jiau, "Evaluation of neural networks and data mining methods on a credit assessment task for class imbalance problem," Nonlinear Analysis, Vol.7, pp.720-747, 2006. https://doi.org/10.1016/j.nonrwa.2005.04.006
- H. Zhao, "Instance weighting versus threshold adjusting for cost-sensitive classification," Knowl. Inf. Syst., Vol.15, pp.321-334, 2008. https://doi.org/10.1007/s10115-007-0079-1
- F. Provost and T. Fawcett, "Robust classification for imprecise environments," Machine Learning, Vol.42, pp.203-231, 2001. https://doi.org/10.1023/A:1007601015854
- Y. Sun, M. S. Kamel, A. K. C. Wong, and Y. Wang, "Cost-sensitive boosting for classification of imbalanced data," Pattern Recognition, Vol.40, pp.3358-3378, 2007. https://doi.org/10.1016/j.patcog.2007.04.009
- Z.-H. Zhou and X.-Y. Liu, "Training cost-sensitive neural networks with method saddressing the class imbalance problem," IEEE Trans. Knowledge and Data Eng., Vol.18, pp.63-77, 2006. https://doi.org/10.1109/TKDE.2006.17
- N. V. Chawla, "SMOTE: Synthetic minority over-sampling technique," Journal of Artificial Intelligence Research, Vol.16, pp.321-357, 2002.
- H.-C. Kim, "Constructing support vector machine ensemble," Pattern Recognition, Vol.36, pp.2757-2767, 2003. https://doi.org/10.1016/S0031-3203(03)00175-4
- D. E. Rumelhart and J. L. McClelland, Parallel Distributed Processing. MIT Press, Cambridge, MA, 1986.
- S.-H. Oh, "Improving the error back-propagation algorithm with a modified error function," IEEE Trans. Neural Networks, Vol.8, pp.799-803, 1997. https://doi.org/10.1109/72.572117
- A. van Ooyen and B. Nienhuis, "Improving theconvgence of the back-propagation algorithm," Neural Networks, Vol.5, pp.465-471, 1992. https://doi.org/10.1016/0893-6080(92)90008-7
- Y. Lee, S.-H. Oh, and M. W. Kim, "An analysis of premature saturation in back-propagation learning," Neural networks, Vol.6, pp.719-728, 1993. https://doi.org/10.1016/S0893-6080(05)80116-9
- UCI Machine Learning Repository: http://www.ics.uci.edu/-mlearn/MLRepository.html
Cited by
- Cloud-assisted QoE guarantee scheme based on adaptive cross-layer perceptron of artificial neural network for mobile Internet vol.2016, pp.1, 2016, https://doi.org/10.1186/s13639-016-0022-1