부하예측의 경우 가장 중요한 문제는 특수일의 부하를 예측하는 것이고, 따라서 본 본문은 과거 특수일 부하 데이터를 이용하여 신경회로망 모델에 의해서 특수일 피크부하를 예측하는 방법을 제시한다. 특수일 부하는 예측되었고, 예측 오차율은 광복절을 제외하고는 l∼2% 정도의 비교적 우수한 예측결과를 도출하였다. 따라서 사용한 예측 모델은 특수일의 부하에 만족스러운 정밀한 예측이 가능하고. 신경회로망은 특수일 부하 예측의 결과를 검증하기 위해 4차 직교다항식모형과 특수일 부하의 예측에효과적인 패턴 변환비를 이용한 신경회로망 모형을 구성했다. 한편, 시간별 특수일의 부하예측에도 신경회로망을 적용한 특수일 부항예측의 경우와 같은 양호한 예측결과를 보였다.
빙축열 시스템과 같은 열교환 시스템을 이용하여 심야의 전력 경부하 시 주간에 이용할 냉방부하를 축열하였다가 주간에 공급함으로써 전력의 평준화와 전력 설비의 효율적 운용을 기할 수 있어 전력의 안정적인 수급과 에너지의 효율을 극대화할 수 있다. 하지만 빙축열 시스템의 제어 운전을 전적으로 운전자의 경험에 의존하는 경우에 충분한 냉방 부하를 공급하기 위한 잉여축열에너지가 비경제적으로 많아져서 빙축열 시스템의 경제성이 저하되고 사용 효과가 낮아지는 문제점이 많이 발생되고 있다. 경제적인 활용 효과를 고려하여 빙축열 시스템을 효율적으로 운용하기 위해서는 냉방부하량이 기후 특성에 의해 결정되므로 기후를 정확하게 예측하고 이를 토대로 다음날의 시간별 냉방부하를 예측하여 적정한 축열량을 결정하여야 하는 어려움이 따른다. 이러한 문제를 해결하기 위해 본 연구에서는 신경망을 이용하여 기상 데이터를 토대로 다음날의 온도와 습도를 예측하고 예측된 온도와 습도 및 냉방부하 실적 자료를 기반으로 신경망을 이용하여 시간별 냉방부하를 예측하는 알고리즘을 제시하였다. 제안된 냉방 부하예측 알고리즘에 의해 구축된 한국전력공사 속초생활연수원의 부하예측모델을 이용하여 온도, 습도, 냉방부하를 예측한 결과 기존 방법에 의한 것보다 우수한 예측 성능을 보였다.
전력계통의 목표를 달성하기 위한 기본적인 요청은 시시각각으로 변동되는 전력부하를 확실하게 예측하는 일부터 시작된다. 그런데 전력부하는 온도, 습도, 광도 등 예측일의 기상요인은 물론 산업구조, 경기변동의 사회적인 요인에 의해 변화된다. 또한 온라인 예측시는 자동급전시스템의 여건이나 예측주기에 따라 각각 고려해야 할 사항이 다양하므로 정확도가 높으면서도 안정된 결정적인 예측기법을 찾기가 어렵다. 그러나 주어진 계통과 이용할 수 있는 여건을 바탕으로 했을때의 허용정도 및 자동화등 실제 적용면에서 보다 나은 예측기법은 생각될 수 있다. 필자들은 우리나라 계통을 대상으로 자동급전시스템(AGC/SCADA system)에 의해 온라인 리얼타임으로 취득해온 부하데이터를 이용하여 자유자재 (interactive)기능을 내포한 단기 부하예측 팩키지를 개발한 바 있으며 이에 소개하는 바이다.
신경망방법은 공학, 경영 그리고 정보기술과 같이 다양한 분양에서 널리 사용되어지고 있다. 신경망방법은 기본적으로 예측, 제어, 식별과 같은 기능을 가지고 있는데, 본 논문에서는 신경망방법을 이용하여 C사의 모델 T의 히트펌프 전기부하를 예측하였다. 부하예측은 시스템을 더욱 효율적이고, 적절하게 만들기 위해 필요하다. 본 논문에서 사용된 히트펌프는 지열원 히트 펌프 시스템이다. 이 지열 히트 펌프의 부하는 사전에 미리 예측되어진 외기온도 및 건물 열부하에 따라 측정 학습된 전력 소비량으로 겨울에는 난방, 여름에는 냉방에 대한 전력 부하를 예측할 수 있다. 이 신경망방법은 신경망 학습 순서를 통해 부하 예측을 위해 히트펌프의 성능데이터를 필요로 한다. 이 부하 예측 인공지능망 방법으로 외기 온도별 건물 통합형 지열 히트 펌프 부하가 예측되어질 수 있다.
신경회로망을 이용한 변압기의 단기 부하예측 알고리즘을 제안한다. 변압기에 대한 단기부하예측은 그 필요성에도 불구하고 연구자들에게 많은 관심을 받지 못했다. 제안된 알고리즘은 입력값으로 예측일 이전의 변압기 최대부하와 해당지역의 최고온도, 최저온도 그리고 예측일의 최고온도, 최저온도로 구성하고 적절한 학습케이스를 선택하여 신경회로망의 학습을 통해 배전용 변압기의 단기부하예측을 수행하였다. 제안된 방법은 서울 남현동의 배전용 변압기를 샘플로 추출하여 예측하였다. 예측결과 배전용 변압기의 부하예측에 대한 정확도의 우수성을 확인했다. 제안된 알고리즘은 배전용 변압기의 과부하에 의한 사고 예방에 도움을 줄 것이다.
특수일 부하를 예측하기 위하여 BP 신경회로망 모형과 다중 회귀모형을 구성한다. 신경회로망 모형은 패턴 변환비를 이용하고, 다중회귀 모형은 평일 환산비를 이용하여 특수일 부하를 예측한다. 주간 피크 부하예측 모형에 패턴 변환비를 이용하여 짧고 긴 특수일 부하를 예측 한 결과 주간 평균 오차율이 1∼2[%]로 나와 본 기법의 적합성을 확인할 수 있다. 하지만, 패턴 변환비 방법으로는 하계의 특수일 부하 예측은 어려웠다. 따라서 기온-습도, 불쾌지수 등을 설명변수로 하는 다중 회귀 모형을 구성하고 평일 환산비를 이용하여 하계의 특수일 부하를 예측한다. 평일만의 예측 모형과 예측 결과를 비교해 보면 월 평균 오차율이 비슷하게 나와 이용한 방법의 적합성을 확인하였다. 그리고, 통계적 검정을 통해 구성한 예측 모형의 유효성을 입증할 수 있었다. 이로서 본 연구에서 제시한 특수일 부하를 예측하는 기법의 적합성을 확인함으로서 피크 부하 예측시 큰 난점 중의 하나가 해결되었다.
전력수요를 예측할 경우 가장 중요한 문제 중의 하나가 특수일 부하의 처리문제이다. 따라서 본 연구에서 길고(구정, 추석) 짧은(식목일, 현충일 등) 특수일 피크 부하를 신경회로망과 회귀모형을 이용하여 예측하는 방법을 제시한다. 신경회로망 모형의 특수일 부하 처리는 패턴 변환비를 이용하며, 4차의 직교 다항 회귀모형은 과거의 10년 (1985∼1994)간의 특수일 피크부하 자료를 이용하여 길고 짧은 특수일 부하를 예측한다. 특수일 피크 부하를 예측한 결과, 신경회로망 모형의 주간 평균 예측 오차율과 직교 다항 회귀모형의 예측 오차율을 분석한 결과 1∼2[%]대로 두 모형 모두 양호한 결과를 얻었다. 또한 4차의 직교 다항 회귀 모형의 수정결정계수 및 F 검정을 분석한 결과 구성한 예측 모형의 타당성을 확인하였다. 두 모형의 특수일 부하를 예측한 결과를 비교해 보면 긴 특수일 부하를 예측할 때는 패턴 변환비를 이용한 신경회로망 모형이 보다 더 효과적이었고, 짧은 특수일 부하를 예측할 경우에는 두 방법 모두 유효하였다.
지역난방 시스템의 최적 스케쥴 제어를 위해서는 난방부하 예측이 필요하다. 공동주택의 난방부하는 복잡한 변수들의 영향을 받기 때문에 손쉬운 난방부하 예측을 위해 사용하기 쉬우며 효용성 있는 예측방법의 개발이 필요하다. 본 연구에서는 익일의 시간별 난방부하를 예측하기 위해 단순화된 외기조건 예측방법과 부하 예측방법을 제안하였다. 난방부하 예측을 위해 건물설계서에서 쉽게 얻을 수 있는 간단한 사양과 예측된 온습도가 사용되었다. 제안된 방법의 타당성을 검증하기 위해 지역난방 시스템으로부터 시간별로 실측된 난방부하와 예측된 결과를 비교하였다. 예측된 외기조건은 실측된 값과 비교하여 변화양상이 잘 일치하였다. 예측된 난방부하와 측정된 난방부하를 비교한 결과, 시간별, 일별, 월별 모두 예측과 실측이 비교적 잘 일치하였으며, 난방기간 동안 월별 부하의 평균 오차는 약 4.68%로 비교적 작은 값을 가졌다.
최대수요전력 제어기의 실시간 부하전력예측을 위하여 Newton 보외법을 적용하였다. 기존의 선형기법에 비하여 실제 데이터에 가까운 부하전력을 예측할 수 있었다. 이 새로운 알고리즘을 적용함으로써 부하예측을 보다 정확히 할 수 있어 빈번한 부하차단이나 우발적인 차단을 방지하여 설비 운용의 신뢰성을 높일 수 있다. 개선된 알고리즘은 마이컴으로 제어되는 실제 시스템에 적용하여 보다 나은 성능을 얻을 수 있었다.
본 논문에서는 데이터 마이닝을 이용한 단기 전력 부하 예측 시스템의 새로운 설계 기법을 제안한다. 제안된 단기 부하 예측시스템은 Takagj-Sugeno (T-S) 퍼지 모델 기반 예측기와 분류기로 구성된다. 또한, 제안된 T-S 퍼지 모델 기반 분류기는 전반부 가우시안 집합과 후반부 선형화된 베이지안 분류기로 구성된다 분류기의 파라미터들은 주어진 훈련 집합의 통계적 수치로 쉽게 얻어진다. 제안된 T-S 퍼지 모델 기반 예측기는 한 가지 입력에 대한 선형 시계열 예측기의 볼록 조합 형태를 가진다. 후반부 파라미터 추정 문제는 실제 전력 부하와 예측 전력 부하의 놈(norm)을 최소화하는 볼록 최적화 문제로 간주한다. 그 문제는 선형 행렬 부등식으로 설정됨으로써 후반부 파라미터는 추정된다. 전반부 파라미터 추정문제는 선형 시계열 예측기들이 모여진 전체 T-S 퍼지 시스템의 출력과 실제 전력 부하 사이의 에러를 최소화하는 문제이다. 이 문제는 경사치 하향 기법이 적용하여 해결되었다 제안된 기법의 유용성을 검증하기 위해 본 논문은 하루 후 24시간 전력 부하 예측과 하루 후 최고 전력부하를 예측 실험을 제공한다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.