• Title/Summary/Keyword: 부정맥 분류

Search Result 81, Processing Time 0.018 seconds

EMD based Cardiac Arrhythmia Classification using Multi-class SVM (다중 클래스 SVM을 이용한 EMD 기반의 부정맥 신호 분류)

  • Lee, Geum-Boon;Cho, Beom-Joon
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.14 no.1
    • /
    • pp.16-22
    • /
    • 2010
  • Electrocardiogram(ECG) analysis and arrhythmia recognition are critical for diagnosis and treatment of ill patients. Cardiac arrhythmia is a condition in which heart beat may be irregular and presents a serious threat to the patient recovering from ventricular tachycardia (VT) and ventricular fibrillation (VF). Other arrhythmias like atrial premature contraction (APC), Premature ventricular contraction (PVC) and superventricular tachycardia (SVT) are important in diagnosing the heart diseases. This paper presented new method to classify various arrhythmias contrary to other techniques which are limited to only two or three arrhythmias. ECG is decomposed into Intrinsic Mode Functions (IMFs) by Empirical Mode Decomposition (EMD). Burg algorithm was performed on IMFs to obtain AR coefficients which can reduce the dimension of feature vector and utilized as Multi-class SVM inputs which is basically extended from binary SVM. We chose optimal parameters for SVM classifier, applied to arrhythmias classification and achieved the accuracies of detecting NSR, APC, PVC, SVT, VT and VP were 96.8% to 99.5%. The results showed that EMD was useful for the preprocessing and feature extraction and multi-class SVM for classification of cardiac arrhythmias, with high usefulness.

Optimization on arrhythmia classification algorithm using wavelet parameterization (웨이브렛 변수화 기반의 부정맥 분류 알고리즘 최적화)

  • Kim, Jin-Kwon;Lee, Byoung-Woo;Lee, Myoung-Ho
    • Proceedings of the KIEE Conference
    • /
    • 2008.10b
    • /
    • pp.195-196
    • /
    • 2008
  • ECG 기반의 부정맥 자동 분류에 관한 연구는 지난 수십 년간 다양한 방법으로 연구되어 왔다. 많은 연구들이 부정맥을 구별해 낼 수 있는 특징 벡터를 찾아내기 위해 연구하였으나, 피험자의 ECG 특징이 각기 다르기 때문에 부정맥으로 인한 차이와 개인 간 차이를 구별하기 어려웠다. 생체데이터는 그 특성상 서로 다른 특징을 갖고 있으며, 다양한 특징을 가진 사람들에게 적용하기 위한 범용성과 부정맥 검출의 정확성 사이에 교환적 관계를 갖게 된다. 특히 ECG 데이터의 경우 사람 식별 데이터로 사용하고자 하는 연구가 있을 정도로 개인 간 편차가 분명하다. wavelet 분석방법은 다양한 mother wavelet을 사용할 수 있다는 점을 큰 장점으로 가지고 있으며, wavelet parameterization 기법을 사용하여 임의의 직교 wavelet basis를 발생시킬 수 있다. 본 논문은 wavelet parameterization을 사용하여 개인 간의 ECG 파형의 차이를 상쇄시키고, 부정맥의 차이만을 부각시킴으로써 ECG 기반의 부정맥 자동 분류 성능을 높이고자 하는데 목적이 있다.

  • PDF

Arrhythmia Detection Using Rhythm Features of ECG Signal (심전도 신호의 리듬 특징을 이용한 부정맥 검출)

  • Kim, Sung-Oan
    • Journal of the Korea Society of Computer and Information
    • /
    • v.18 no.8
    • /
    • pp.131-139
    • /
    • 2013
  • In this paper, we look into previous research in relation to each processing step for ECG diagnosis and propose detection and classification method of arrhythmia using rhythm features of ECG signal. Rhythm features for distribution of rhythm and heartbeat such as identity, regularity, etc. are extracted in feature extraction, and rhythm type is classified using rule-base constructed in advance for features of rhythm section in rhythm classification. Experimental results for all of rhythm types in the MIT-BIH arrhythmia database show detection performance of 100% for arrhythmia with only normal rhythm rule and applicability of classification for rhythm types with arrhythmia rhythm rules.

Feature Extraction based on Auto Regressive Modeling and an Premature Contraction Arrhythmia Classification using Support Vector Machine (Auto Regressive모델링 기반의 특징점 추출과 Support Vector Machine을 통한 조기수축 부정맥 분류)

  • Cho, Ik-sung;Kwon, Hyeog-soong;Kim, Joo-man;Kim, Seon-jong
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.23 no.2
    • /
    • pp.117-126
    • /
    • 2019
  • Legacy study for detecting arrhythmia have mostly used nonlinear method to increase classification accuracy. Most methods are complex to process and manipulate data and have difficulties in classifying various arrhythmias. Therefore it is necessary to classify various arrhythmia based on short-term data. In this study, we propose a feature extraction based on auto regressive modeling and an premature contraction arrhythmia classification method using SVM., For this purpose, the R-wave is detected in the ECG signal from which noise has been removed, QRS and RR interval segment is modelled. Also, we classified Normal, PVC, PAC through SVM in realtime by extracting four optimal segment length and AR order. The detection and classification rate of R wave and PVC is evaluated through MIT-BIH arrhythmia database. The performance results indicate the average of 99.77% in R wave detection and 99.23%, 97.28%, 96.62% in Normal, PVC, PAC classification.

Parameter Extraction for Based on AR and Arrhythmia Classification through Deep Learning (AR 기반의 특징점 추출과 딥러닝을 통한 부정맥 분류)

  • Cho, Ik-sung;Kwon, Hyeog-soong
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.24 no.10
    • /
    • pp.1341-1347
    • /
    • 2020
  • Legacy studies for classifying arrhythmia have been studied in order to improve the accuracy of classification, Neural Network, Fuzzy, Machine Learning, etc. In particular, deep learning is most frequently used for arrhythmia classification using error backpropagation algorithm by solving the limit of hidden layer number, which is a problem of neural network. In order to apply a deep learning model to an ECG signal, it is necessary to select an optimal model and parameters. In this paper, we propose parameter extraction based on AR and arrhythmia classification through a deep learning. For this purpose, the R-wave is detected in the ECG signal from which noise has been removed, QRS and RR interval is modelled. And then, the weights were learned by supervised learning method through deep learning and the model was evaluated by the verification data. The classification rate of PVC is evaluated through MIT-BIH arrhythmia database. The achieved scores indicate arrhythmia classification rate of over 97%.

Design of Arrhythmia Classification System Based on 1-D Convolutional Neural Networks (1차원 합성곱 신경망에 기반한 부정맥 분류 시스템의 설계)

  • Kim, Seong-Woo;Kim, In-Ju;Shin, Seung-Cheol
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.24 no.1
    • /
    • pp.37-43
    • /
    • 2020
  • Recently, many researches have been actively to diagnose symptoms of heart disease using ECG signal, which is an electrical signal measuring heart status. In particular, the electrocardiogram signal can be used to monitor and diagnose arrhythmias that indicates an abnormal heart status. In this paper, we proposed 1-D convolutional neural network for arrhythmias classification systems. The proposed model consists of deep 11 layers which can learn to extract features and classify 5 types of arrhythmias. The simulation results over MIT-BIH arrhythmia database show that the learned neural network has more than 99% classification accuracy. It is analyzed that the more the number of convolutional kernels the network has, the more detailed characteristics of ECG signal resulted in better performance. Moreover, we implemented a practical application based on the proposed one to classify arrythmias in real-time.

Arrhythmia Classification using Hybrid Combination Model of CNN-LSTM (합성곱-장단기 기억 신경망의 하이브리드 결합 모델을 이용한 부정맥 분류)

  • Cho, Ik-Sung;Kwon, Hyeog-Soong
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.26 no.1
    • /
    • pp.76-84
    • /
    • 2022
  • Arrhythmia is a condition in which the heart beats abnormally or irregularly, early detection is very important because it can cause dangerous situations such as fainting or sudden cardiac death. However, performance degradation occurs due to personalized differences in ECG signals. In this paper, we propose arrhythmia classification using hybrid combination model of CNN-LSTM. For this purpose, the R wave is detected from noise removed signal and a single bit segment was extracted. It consisted of eight convolutional layers to extract the features of the arrhythmia in detail, used them as the input of the LSTM. The weights were learned through deep learning and the model was evaluated by the verification data. The performance was compared in terms of the accuracy, precision, recall, F1 score through MIT-BIH arrhythmia database. The achieved scores indicate 92.3%, 90.98%, 92.20%, 90.72% in terms of the accuracy, precision, recall, F1 score, respectively.

Arrhythmia Classification using GAN-based Over-Sampling Method and Combination Model of CNN-BLSTM (GAN 오버샘플링 기법과 CNN-BLSTM 결합 모델을 이용한 부정맥 분류)

  • Cho, Ik-Sung;Kwon, Hyeog-Soong
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.26 no.10
    • /
    • pp.1490-1499
    • /
    • 2022
  • Arrhythmia is a condition in which the heart has an irregular rhythm or abnormal heart rate, early diagnosis and management is very important because it can cause stroke, cardiac arrest, or even death. In this paper, we propose arrhythmia classification using hybrid combination model of CNN-BLSTM. For this purpose, the QRS features are detected from noise removed signal through pre-processing and a single bit segment was extracted. In this case, the GAN oversampling technique is applied to solve the data imbalance problem. It consisted of CNN layers to extract the patterns of the arrhythmia precisely, used them as the input of the BLSTM. The weights were learned through deep learning and the learning model was evaluated by the validation data. To evaluate the performance of the proposed method, classification accuracy, precision, recall, and F1-score were compared by using the MIT-BIH arrhythmia database. The achieved scores indicate 99.30%, 98.70%, 97.50%, 98.06% in terms of the accuracy, precision, recall, F1 score, respectively.

Detection of Arrhythmia Using Heart Rate Variability and A Fuzzy Neural Network (심박수 변이도와 퍼지 신경망을 이용한 부정맥 추출)

  • Jang, Hyoung-Jong;Lim, Joon-Shik
    • Journal of Internet Computing and Services
    • /
    • v.10 no.5
    • /
    • pp.107-116
    • /
    • 2009
  • This paper presents an approach to detect arrhythmia using heart rate variability and a fuzzy neural network. The proposed algorithm diagnoses arrhythmia using 32 RR-intervals that are 25 seconds on average. We extract six statistical values from the 32 RR-intervals, which are used to input data of the fuzzy neural network. This paper uses the neural network with weighted fuzzy membership functions(NEWFM) to diagnose arrhythmia. The NEWFM used in this algorithm classifies normal and arrhythmia. The performances by Tsipouras using the 48 records of the MIT-BIH arrhythmia database was below 80% of SE(sensitivity) and SP(specificity) in both. The detection algorithm of arrhythmia shows 88.75% of SE, 82.28% of SP, and 86.31% of accuracy.

  • PDF

Classification of ECG arrhythmia using Discrete Cosine Transform, Discrete Wavelet Transform and Neural Network (DCT, DWT와 신경망을 이용한 심전도 부정맥 분류)

  • Yoon, Seok-Joo;Kim, Gwang-Jun;Jang, Chang-Soo
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.7 no.4
    • /
    • pp.727-732
    • /
    • 2012
  • This paper presents an approach to classify normal and arrhythmia from the MIT-BIH Arrhythmia Database using Discrete Cosine Transform(DCT), Discrete Wavelet Transform(DWT) and neural network. In the first step, Discrete Cosine Transform is used to obtain the representative 15 coefficients for input features of neural network. In the second step, Discrete Wavelet Transform are used to extract maximum value, minimum value, mean value, variance, and standard deviation of detail coefficients. Neural network classifies normal and arrhythmia beats using 55 numbers of input features, and then the accuracy rate is 98.8%.