• Title/Summary/Keyword: 부유식 해상풍력

Search Result 74, Processing Time 0.021 seconds

Effects of Initial Conditions on Transient Responses in Dynamic Simulation of FOWT (초기 조건이 부유식 풍력터빈 동역학 해석의 과도응답에 미치는 영향)

  • Song, Jin-Seop;Rim, Chae-Whan;Moon, Seok-Jun;Nam, Yong-Yun
    • Journal of Ocean Engineering and Technology
    • /
    • v.28 no.4
    • /
    • pp.288-293
    • /
    • 2014
  • The IEC standard for onshore or offshore wind turbines requires additional dummy simulations (at least 5 s) for the transient responses due to initial conditions. An increase in the dummy time causes a considerable increase in the computational cost considering multiple design spirals with several thousand design load analysis cases. A time of 30 s is typically used in practical simulations for a wind turbine design with a fixed platform. However, 30 s may be insufficient for floating offshore wind turbines (FOWT) because the platforms have lower natural frequencies, and the transient responses will last much longer. In this paper, an initial condition application algorithm is implemented for WindHydro, and the appropriate dummy simulation time is investigated based on a series of dynamic simulations of a FOWT. As a result, it is found that more than 300 s is required for the platform to have stationary motion after the initial transient responses for the FOWT under the conditions considered.

비정상 와류격자 기법을 이용한 해상용 부유식 풍력발전기의 공력하중특성

  • Jeon, Minu;Kim, Hogeon;Lee, Seungmin;Lee, Soogab
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2011.05a
    • /
    • pp.62.1-62.1
    • /
    • 2011
  • The wind can be stronger and steadier further from shore, but water depth is also deeper. Then bottom-mounted towers are not feasible, and floating turbines are more competitive. There are additional motions in an offshore floating wind turbine, which results in a more complex aerodynamics operating environment for the turbine rotor. Many aerodynamic analysis methods rely on blade element momentum theory to investigate aerodynamic load, which are not valid in vortex ring state that occurs in floating wind turbine operations. So, vortex lattice method, which is more physical, was used in this analysis. Floating platform's prescribed positions were calculated in the time domain by using floating system RAO and waves that are simulated using JONSWAP spectrum. The average value of in-plane aerodynamic force increase, but the value of out-of-plane force decrease. The maximum variation aerodynamic force abruptly increases in severe sea state. Especially, as the pitch motion of the barge platform is large, this motion should be avoided to decrease the aerodynamic load variation.

  • PDF

A study on a Carbon Trust OWA Stage 2 Domestic Verification Case in the Yellow Sea (서해 해상 환경에서 선박형 부유식 라이다의 Carbon Trust OWA Stage 2 국내 인증 사례에 대한 고찰)

  • Yong-Soo Gang;Dong-Chan Chang;Su-In Yang;Baek-Bum Lee
    • Journal of Wind Energy
    • /
    • v.15 no.1
    • /
    • pp.50-59
    • /
    • 2024
  • Floating LiDAR systems provide significant savings in cost and time compared to the fixed meteorological mast measurement type, and have the advantage of being able to be deployed in various locations due to less restriction on the depth of the installation site. However, to use the wind data collected by a floating LiDAR system commercially, verification procedure is required to ensure that the collected data have sufficient availability. The Carbon Trust OWA roadmap presents guidelines in three stages for the reliability of the wind data collected using a floating LiDAR system. Companies developing wind farms are requesting at least Stage 2 (pre-commercial stage) presented by OWA, and many overseas companies are leading the domestic and overseas markets. In this paper, we introduce the case of OWA Stage 2 certification for the commercial operation of floating LiDAR systems.

Study on FOWT Structural Design Procedure in Initial Design Stage Using Frequency Domain Analysis (주파수 영역 해석을 활용한 부유식 해상풍력 플랫폼 초기 구조설계 절차 연구)

  • Ikseung Han;Yoon-Jin Ha;Kyong-Hwan Kim
    • Journal of Wind Energy
    • /
    • v.14 no.1
    • /
    • pp.29-36
    • /
    • 2023
  • The analysis of the floating offshore wind turbine platform is based on the procedures provided by the IEC including the International Classification Society, which recommends the analysis in the time domain. But time-domain simulation requires a lot of time and resources to solve tens of thousands of DLCs. This acts as a barrier in terms of floating structure development. For final verification, it requires very precise analysis in the time domain, but from an initial design point of view, a simplified verification procedure to predict the quantity of materials quickly and achieve relatively accurate results is crucial. In this study, a structural design procedure using a design wave applied in the oil and gas industries is presented combined with a conservative turbine load. With this method, a quick design spiral can be rotated, and it is possible to review FOWTs of various shapes and sizes. Consequently, a KRISO Semi-Submersible FOWT platform was developed using a simplified design procedure in frequency-domain analysis.

An Experimental Study on Dynamic Performance of Large Floating Wave-Offshore Hybrid Power Generation Platform in Extreme Conditions (대형 부유식 파력-해상풍력 복합발전 구조물의 극한환경 운동 성능에 대한 실험적 연구)

  • Kim, Kyong Hwan;Hong, Jang Pyo;Park, Sewan;Lee, Kangsu;Hong, Keyyong
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.19 no.1
    • /
    • pp.7-17
    • /
    • 2016
  • The present study experimentally considers dynamic performance of large floating wave-offshore hybrid power generation platform in extreme conditions. In order to evaluate the motion performance of the large floating hybrid power generation platform, 1/50 scaled model was manufactured. A mooring line was also manufactured, and free-decay and static pull-out tests were carried out to check the mooring model. A mooring line table was introduced to satisfy the water depth, and environmental conditions were checked. Motion responses in regular waves were measured and complicated environmental conditions including wave, wind, and current were applied to see the dynamic performance in extreme/survival conditions. Maximum motion and acceleration were judged following the design criteria, and maximum offset and mooring tension were also checked based on the rule. The characteristics of hybrid power generation platform are discussed based on these data.

Variation in the Pullout Capacity according to the Tilt and Misorientation of a Floating Offshore Wind Turbine Suction Anchor Using Geometric Method (기하학적 방법을 이용한 부유식 해상풍력 석션앵커의 수직도와 회전오차에 따른 인발지지력 변화)

  • Dae-Hwan Kim;Na-Young Jung;Won-Hyo Lee;Tae-Hyung Kim
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.36 no.3
    • /
    • pp.95-104
    • /
    • 2024
  • In this study, geometric calculation was performed to investigate the influence of the combined effect of tilt and misorientation on the pullout capacity of suction anchor used in floating offshore wind turbine. When considering the combined effect of tilt and misorientation, it was observed that they do not proportionally affect the pullout capacity but rather influence each other relatively. Criteria considering both tilt and misorientation are not provided in existing literature or DNV recommendation. Therefore, based on the comprehensive results of this study, a proposed decrease in pullout capacity within 3% is suggested.

Design of Ship-type Floating LiDAR Buoy System for Wind Resource Measurement inthe Korean West Sea and Numerical Analysis of Stability Assessment of Mooring System (서해안 해상풍력단지 풍황관측용 부유식 라이다 운영을 위한 선박형 부표식 설계 및 계류 시스템의 수치 해석적 안정성 평가)

  • Yong-Soo, Gang;Jong-Kyu, Kim;Baek-Bum, Lee;Su-In, Yang;Jong-Wook, Kim
    • Journal of Navigation and Port Research
    • /
    • v.46 no.6
    • /
    • pp.483-490
    • /
    • 2022
  • Floating LiDAR is a system that provides a new paradigm for wind condition observation, which is essential when creating an offshore wind farm. As it can save time and money, minimize environmental impact, and even reduce backlash from local communities, it is emerging as the industry standard. However, the design and verification of a stable platform is very important, as disturbance factors caused by fluctuations of the buoy affect the reliability of observation data. In Korea, due to the nation's late entry into the technology, a number of foreign equipment manufacturers are dominating the domestic market. The west coast of Korea is a shallow sea environment with a very large tidal difference, so strong currents repeatedly appear depending on the region, and waves of strong energy that differ by season are formed. This paper conducted a study examining buoys suitable for LiDAR operation in the waters of Korea, which have such complex environmental characteristics. In this paper, we will introduce examples of optimized design and verification of ship-type buoys, which were applied first, and derive important concepts that will serve as the basis for the development of various platforms in the future.

Development of Aerodynamic Analysis Technology for Wind Turbines using a Multibody Dynamic Analysis Software (다물체 동력학 해석 프로그램을 이용한 풍력발전기 공력해석 기술개발)

  • Rim, Chae Whan;Bang, Je Sung;Cho, Huije;Moon, Seok Jun;Chung, Tae Young
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2010.06a
    • /
    • pp.180.2-180.2
    • /
    • 2010
  • Simulation technology for dynamic analysis of wind turbine is developed. The Aerodyn and the DAFUL are chosen for aerodynamic analysis and multi-body and flexible body dynamics respectively. Subroutines and variables of Aerodyn developed by NREL are analyzed with hub-height wind data, full field turbulent wind data and Airfoil data. The interface to perform coupled analysis between AeroDyn and DAFUL, GUI for modeling several parts of wind turbines are developed. The program will be extended to analyze the coupled analysis of aerodynamic and hydrodynamic behavior for floating offshore wind turbines.

  • PDF

Wind resource evaluation and verification of wind map with simultaneous observation at six offshore locations in Gunsan and Yeonggwang (군산·영광 해상 6개 지점 동시 관측을 통한 풍력자원 평가 및 바람지도 검증)

  • Moon-Seon Jeong;In-Sung Jeon;Ji-Young Kim
    • Journal of Wind Energy
    • /
    • v.14 no.3
    • /
    • pp.5-13
    • /
    • 2023
  • Floating LiDAR systems (FLSs) are used in many countries because they are easier to install than stationary weather towers, have low maintenance costs, and can be installed in deep sea areas. However, FLSs are rarely used in Korea due to a lack of clear evaluation criteria to verify the reliability and uncertainty of their measurements. This study is the first to verify the reliability of FLSs in Korea with one-year simultaneous observation of six lidar systems - two fixed and four floating systems - in sea areas of Gunsan and Yeonggwang. The reliability of FLSs measurement data was verified by comparison between fixed and floating systems. Moreover, differences between existing wind resource maps and the data observed from the six points were analyzed and wind resource maps were calibrated. The results show a return rate of more than 95 % of the observed data and strong correlations between fixed and floating systems (average R2 of 0.977). Additionally, errors in wind speed predictions to produce a wind resource map could be significantly reduced from 5.7 % to 0.6 % after calibrations with the observation data.

A Study on the Global Motion Performance of Floater and Mooring Due to Arrangement of Detachable Mooring System (탈착형 계류시스템 배치에 따른 부유식 해양구조물의 운동 및 계류성능에 관한 연구)

  • Kangsu Lee;Hyun-Sung Kim;Byoung Wan Kim
    • Journal of Wind Energy
    • /
    • v.14 no.2
    • /
    • pp.26-33
    • /
    • 2023
  • In this study, the global response characteristics of floater and mooring for floating offshore wind turbine with a detachable mooring system are performed. Global motion and structural response result extracted from the coupled motion analysis of 10MW DTU floating offshore wind turbine with detachable mooring system modeled by high-order boundary element model and finite element mesh, were used to study the characteristics of tension on mooring lines subjected to three different types of ocean loads. Breaking limit of mooring line characterized by wind, current and wave load has a major effect on the distribution of mooring tension found in time domain analysis. Based on the numerical results of coupled motion analysis, governing equation for calculating the motion response of a floater under ocean loads, and excitation force and surge motion and tension respectively are presented using excursion curve. It is found that the response of floater is reliable and accurate for calculating the tension distributions along the mooring lines under complex loadings. This means that the minimun breaking limit of mooring system satisfied a design criteria at ultimate ocean environmental loading condtions.