• Title/Summary/Keyword: 부식피트

Search Result 16, Processing Time 0.028 seconds

Influence of Salt Solution Concentration on Corrosion Pit Growth Characteristic of Dual Phase Steel (복합조직강의 부식피트 성장특성에 미치는 식염수농도의 영향)

  • Oh, Sae-Wook;Kang, Ho-Min;Kim, Tae-Man;Do, Yeong-Min
    • Journal of Ocean Engineering and Technology
    • /
    • v.2 no.2
    • /
    • pp.78-86
    • /
    • 1988
  • In order to investigate the corrosion pit occurrence and growth characteristic of M.E.F.(martensite encapsulated islands of ferrite) dual phase steel was made with a suitable heat treatment of raw material(SS41), a corrosion fatigue test was performed under rotary bending in the salt solution having a concentration from 0.01 wt percent to 3.5 wt percent. The fatigue strength of dual phase steel was remarkably decreased with an increase in concentration of salt solution; approximately from 63% to 80% in case of dual phase steel and from 40% to 71% in case of raw material. Corrosion pit occurred in the martensite phase and fatigue cracks from corrosion pits were selectively propagated in martensite phases. In the observation of corrosion pits at the origin of fatigue cracks, it had been found that corrosion pits were grown into hemispherical pits and a/c(the surface diameter, 2c and the depth, a of corrosion pit)was about 1.0-1.5regardless of the variation of salt solution concentration. The difference of corrosion pit depth growth rate was increased with an increase in concentration of salt solution according to an increase in stress level.

  • PDF

The Development and its Application of Diagnostic Technique for Corrosion Defect of U-type Open Rack Vaporizer (개방형 U-type 기화기의 부식손상부 진단기법 개발 및 적용)

  • Jang S. Y.;Lee S. M.;Oh B. T.;Kho Y. T.
    • Journal of the Korean Institute of Gas
    • /
    • v.5 no.3 s.15
    • /
    • pp.45-50
    • /
    • 2001
  • Open rack vaporizer (ORV) has been used in liquefied natural gas (LNG) receiving terminal in order to vaporize LNG into natural gas (NG) by heat exchange with seawater The U-type ORV which had been operated with seawater for 14 years is one of the important utilities of the gas production and the weld part of tube connected with header_ pipe had experienced many corrosion problems. To elucidate the cause of corrosion at weld part of vaporizer tube, corrosion potentials were compared by parts. This study concerns on the measurement of corrosion pit depth using non-destructive method and the evaluation of stress distribution in an aspect of safety with finite element analysis. In order to confirm the reliability of galvanic corrosion between weld parts and base metal, the measurement of corrosion potential by parts was conducted for 20 minutes in 3.5$\%$(wt.) NaCl solution. Many non-destructive methods were tried to measure the remaining thickness of vaporizer tube at fields. For general corrosion, tangential radiography test was confirmed as an effective method. In case of a fine corrosion pit, the shape of corrosion pit was reproduced using surface replication method. From collected data, stress distributions were quantitatively evaluated with 2-dimensional finite element method and the diagnostic evaluation on internal pressure of the U-type vaporizer could be made.

  • PDF

The Effects of 3.5% NaCl Aqueous Solution Temperature on the Corrosion Fatigue Fracture of Dual phase steel (3.5% NaCl 수용액의 온도변화가 복합조직강의 부식피로파괴에 미치는 영향)

  • 오세욱;도영문;박수영;김재철;김광영
    • Journal of Ocean Engineering and Technology
    • /
    • v.6 no.1
    • /
    • pp.140-147
    • /
    • 1992
  • Corrsion fatigue test was performed under rotated bending in 3.5% NaCl aqueous solution having a temperature from 278.deg.K in order to investigate the effects of aqueous solution remperature on the corrosion fatigue fracture of raw material steel(SS41) and dual phase steel that was produced from SS41 by a series of heat treatment. Corrosion fatigue life decreases remarkably with increase in solution temperature or with decrease in stress level. The corrosion fatigue life and the crack propagation rate at 303.deg.K show the similar behaviors with those at 318.deg.K, which is assumed to be caused by concentration polarization phenamena. The number and the lengths of microcracks increase with increase in solution temperature, so they lead to the decrease in corrosion fatigue life.

  • PDF

Life Prediction and Fatigue Strength Evaluation for Surface Corrosion Materials (인공부식재의 피로강도평가와 통계학적 수명예측에 관한 연구)

  • 권재도;진영준;장순식
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.16 no.8
    • /
    • pp.1503-1512
    • /
    • 1992
  • The strength evaluation and life prediction on the corrosion part of structure is one of the most important subjects, as a viewpoint of reducing economic loss by regular inspection, maintenance, repair and replace. For this purpose, it has been difficult to obtain the available data on growth of pit depth or growth rate of each pit which depends on time. In this paper, the life prediction and strength evaluation method was suggested for the structure with irregular stress concentration part by surface corrosion. The statistical distribution pattern of corrosion depth and the degree of fatigue strength decline were confirmed according to corrosion period by artificial corrosion of SS41 steel. The life prediction and the fatigue strength evaluation of materials with consideration of the corrosion period on the extreme value statistic analysis by the data of maximum depth of corrosion and on random variable was studied.

Characteristics of corrosion fatigue strength of TiN coating steel (TiN 피복강재의 부식피로강도특성)

  • 김귀식;현경수;오맹종
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.19 no.3
    • /
    • pp.62-69
    • /
    • 1995
  • In order to investigate the effect of TiN coating on corrosion fatigue behavior of metal, the rotary bending corrosion fatigue tests were carried out in 3% NaCl solution by using the round bar specimens of high-speed steel, SKH-9, coated with TiN by PVD method. From the experimental results, fatigue strength of TiN coating steel in air was obvious improvement as compared with that of the substrate because of the restriction of dislocation movement in near surface of the substrate by hard thin film. In 3% NaCl solution, corrosion fatigue life of TiN coating specimen in high stress level was improvement same as in air. But in low stress level, corrosion fatigue life of TiN coating one was equivalent to that without coating, due to much crack initiated from corrosion pits formed at the substrate by failure of coating layer.

  • PDF

Effects of Acid Fog Environment on the Corrosion Fatigue Strength of Structural Steel SM55C (기계구조용강 SM55C의 부식피로강도에 미치는 산성안개 분위기의 영향)

  • 김진학;김민건
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.8 no.5
    • /
    • pp.181-187
    • /
    • 2000
  • Fatigue tests under acid fog environment were carried out to investigate the effect of acid fog on the corrosion fatigue strength of SM55C in comparison with distilled water. Main results obtained are as follows. The fatigue strength of SM55C under acid fog environment are remarkably decreased as compared with that of distilled water specimen. The corrosive effect of acid fog on fatigue strength are more serious under low stress amplitude level than under high stress amplitude level, and this leads to continuous reduction of fatigue strength. Under acid fog environment in early stage of crack growth. because the corrosive components dissolve the crack face offensively. the unstable fracture surface appears. But, the stable corrosion precipitation and products layer are formed on the fracture surface in accordance with the time pass.

  • PDF

Fatigue Strength Evaluation of Rusting Decayed Hull Steel Plate in Air and in Artificial Seawater Condition (선체의 부식쇠모강판의 대기중 및 해수중 피로강도평가에 관한 연구)

  • Kim, Won-Beom;Paik, Jeom-Kee;Iwata, Mitsumasa;Yajima, Hiroshi
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.43 no.4 s.148
    • /
    • pp.467-475
    • /
    • 2006
  • Fatigue strength of hull structural steel plate, extracted from longitudinal bulkhead of a 17-year-old ore/oil carrier for renewal, was investigated in air and in artificial seawater condition. The surface of the plate was covered with corrosion pits and they proved to be crack initiation sites by fractography using SEM. From this research, it was found that the evaluation method for fatigue strength of virgin mild steel plates in air and in artificial seawater can also be applied to the evaluation of the fatigue strength of mild steel plates those were long-term exposed to a corrosive environment and their surfaces had been rusted intensively.

Effect of Shape of External Corrosion in Pipeline on Failure Prediction (외부부식의 형상이 파이프라인의 파손예측에 미치는 영향)

  • Lee, Eok-Seop;Kim, Ho-Jung
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.23 no.11 s.170
    • /
    • pp.2096-2101
    • /
    • 1999
  • This paper presents the effect of shape of external corrosion in pipeline on failure prediction by using numerical simulation. The numerical study for the pipeline failure analysis is based on the FEM(Finite Element Method) with an elastic-plastic and large-deformation analysis. The predicted failure stress assessed for the simulated corrosion defects having different corroded shapes along the pipeline axis are compared with those by methods specified in ANSl/ASME B31G code and a modified B31G code.

Competitive Adsorption of Cd and Cu on Surface of Humic Acid Extracted from Peat (피트에서 추출한 부식산 표면에 대한 카드뮴과 구리의 경쟁 흡착)

  • Lim, Soo-Kil;Chung, Chang-Yoon;Ok, Yong-Sik;Kim, Jeong-Gyu
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.35 no.6
    • /
    • pp.344-351
    • /
    • 2002
  • Chemical speciation and transport of heavy metals in soil environment could be controlled by humic acid. In order to understand the mechanism on competitive adsorption of Cd and Cu on the surface of humic acid extracted from peat, the charge development of humic acid were investigate through a batch adsorption experiment with a series of different background electrolytes levels. The competitive adsorption of Cd and Cu to the humic acid were estimated according to the model using the proton binding constant obtained from the above batch test. The affinity of Cu to the carboxyl group on the humic acid was higher than that of Cd, but the affinity to the phenolic group was lower than to the carboxyl group. It seems that the amount of adsorbed Cd and Cu could be estimated using the proton binding constant obtained from a solution with single background ion. However, it is difficult to interpret the competitive adsorption of Cd and Cu with the constant for single background ion.

The Effect of Shot Peening on Corrosive Behavior of SAE 5155 in $3.5\%$ NaCl Solution ($3.5\%$ NaCl수용액에서 SAE 5155의 부식거동에 미치는 쇼트피닝의 영향)

  • An Jae-Pil;Park Keyung-Dong
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.29 no.6
    • /
    • pp.692-700
    • /
    • 2005
  • In this study. investigated the effect of shot peening on the corrosion of SAE 5155 steel immersed in $3.5\%$ NaCl solution and corrosion characteristics by the heat treatment during shot peening process. The immersion test was Performed on the four kinds of specimens. Corrosion Potential, polarization curve, residual stress etc. were investigated from experimental results. From these test results, the effect of shot peening on the corrosion was evaluated The important results of the experimental study on the effects of shot peened SAE 5155 on the corrosion are as follows; Shot peened specimens show the low of corrosion current as compared with un peened specimens. In the case of corrosion potential, shot Peened specimen shows more negative Potential as compared with that of parent metal Surface of specimen, which is treated with shot peening Process. is Placed as more activated state against inner parent metal. Corrosion rate is shown that shot Peened specimens have less corrode than un peened specimens. But non heat treated shot peened specimens show the biggest weight loss owing to variable compressive residual stress layer by shot ball.