• Title/Summary/Keyword: 부순 모래

Search Result 102, Processing Time 0.015 seconds

Performance Evaluation of Concrete using Performance Improving-type Polycarboxylic acid-based Admixture (성능개선형 폴리카르본산계 혼화제를 사용한 콘크리트의 성능평가에 관한 실험적 연구)

  • Seo, Tae-Seok;Choi, Hoon-Jae;Gong, Min-Ho
    • Journal of the Korea Institute of Building Construction
    • /
    • v.17 no.5
    • /
    • pp.445-451
    • /
    • 2017
  • Because of the supply-demand problem of aggregate, recently, the construction sites using 100% crushed sand are increasing and the use of low quality aggregate such as farmland sand is increasing too. When the low quality aggregate is used, the various quality defect of concrete such as the strength reduction, the increase of shrinkage and bleeding can be occurred. Therefore, in this study, the performance improvement PC admixture was developed to minimize the quality defect of plain concrete of basement parking area, when the low quality aggregate was used at the plain concrete of basement parking area. The slump loss to elapsed time test, the compressive strength test, the bleeding test and the drying shrinkage test were carried out.

Prediction on Mix Proportion Factor and Strength of Concrete Using Neural Network (신경망을 이용한 콘크리트 배합요소 및 압축강도 추정)

  • 김인수;이종헌;양동석;박선규
    • Journal of the Korea Concrete Institute
    • /
    • v.14 no.4
    • /
    • pp.457-466
    • /
    • 2002
  • An artificial neural network was applied to predict compressive strength, slump value and mix proportion of a concrete. Standard mixed tables were trained and estimated, and the results were compared with those of the experiments. To consider variabilities of material properties, the standard mixed fables from two companies of Ready Mixed Concrete were used. And they were trained with the neural network. In this paper, standard back propagation network was used. The mix proportion factors such as water cement ratio, sand aggregate ratio, unit water, unit cement, unit weight of sand, unit weight of crushed sand, unit coarse aggregate and air entraining admixture were used. For the arrangement on the approval of prediction of mix proportion factor, the standard compressive strength of $180kgf/cm^2{\sim}300kgf/cm^2$, and target slump value of 8 cm, 15 cm were used. For the arrangement on the approval of prediction of compressive strength and slump value, the standard compressive strength of $210kgf/cm^2{\sim}240kgf/cm^2$, and target slump value of 12 cm and 15 cm wore used because these ranges are most frequently used. In results, in the prediction of mix proportion factor, for all of the water cement ratio, sand aggregate ratio, unit water, unit cement, unit weight of sand, unit weight of crushed sand, unit coarse aggregate, air entraining admixture, the predicted values and the values of standard mixed tables were almost the same within the target error of 0.10 and 0.05, regardless of two companies. And in the prediction of compressive strength and slump value, the predicted values were converged well to the values of standard mixed fables within the target error of 0.10, 0.05, 0.001. Finally artificial neural network is successfully applied to the prediction of concrete mixture and compressive strength.