• Title/Summary/Keyword: 부상제어

Search Result 355, Processing Time 0.036 seconds

Positioning Control of Magnetic Levitation Stage Using Sliding Mode Controller (슬라이딩모드제어기를 적용한 자기부상 스태이지의 위치제어)

  • Jeon, Jeong-Woo;Lee, Joo-Hoon;Hwang, Don-Ha;Kang, Dong-Sik;Kim, Sung-Shin
    • Proceedings of the KIEE Conference
    • /
    • 2005.07d
    • /
    • pp.2576-2578
    • /
    • 2005
  • In this paper, we address two position control scheme; the lead-lag control and the sliding mode control for a stage system, which is levitated and driven by electric magnetic actuators. This consists of a levitating object (called platen) with 4 permanent magnetic linear synchronous motors in parallel. Each motor generates vertical force for suspension against gravity and propulsion force horizontally as well. The sliding mode control algorithm is more effective than the lead-lag control algorithm to reduce effects from movements and disturbances of other axis.

  • PDF

A Design of Optimal Controller with Friction Reduction of Linear Motor-based Transfer Technology via Lift-force Control (부상력을 이용한 LMTT(Linear Motor-based Transfer Technology) 의 마찰력 감소에 대한 최적 제어기 설계)

  • Seo, Jung-Hyun;Lee, Jin-Woo;Han, Seong-Hun;Lee, Kwon-Soon
    • Proceedings of the KIEE Conference
    • /
    • 2006.07d
    • /
    • pp.1856-1857
    • /
    • 2006
  • The existing automation transfer systems such as AGV(Automated Guided Vehicle) have many problems (maintenance, accuracy, velocity, etc.) and wastes of a vast space and time. Hence we have suggested to LMTT(Linear Motor-based Transfer Technology). This paper deals with fundamental LMTT, and proposes a concept of mass reduction and propulsion control for LMTT when it is starting and reaching an object by using lift-force. By applying optimal controller and the repulsive lift forte in the LMTT, a large percent of vehicle weight is compensated and it reduces friction, then it needs less thrust force to propel the vehicle.

  • PDF

NIST 경량암호 공모사업 동향

  • Baek, Seungjun;Jeon, Yongjin;Kim, Hangi;Kim, Jongsung
    • Review of KIISC
    • /
    • v.30 no.3
    • /
    • pp.17-24
    • /
    • 2020
  • 최근 사물인터넷 환경이 발달하면서 센서 네트워크, 헬스케어, 분산 제어 시스템, 가상 물리 시스템 등의 다양한 분야의 산업이 부상하고 있다. 이를 위한 소형 컴퓨팅 기기가 보편화되고 있지만, 해당 기기들은 제한된 리소스라는 공통의 약점을 가지고 있다. 제한된 환경에서 중요한 데이터들을 보호하기 위해서는 많은 리소스가 필요한 기존의 암호 알고리즘보다 적은 리소스로도 운용할 수 있는 경량암호 알고리즘이 필요하다. NIST에서는 2015년부터 제한된 환경에 적합한 경량암호 알고리즘을 표준화하기 위한 공모사업을 진행 중이다. 현재 2라운드 과정을 거치고 있으며 총 32종의 알고리즘에 대한 안전성, 효율성 분석이 이루어지고 있다. 이에 본 논문에서는 NIST 경량암호 공모사업 1, 2라운드 후보 알고리즘들을 특징별로 분석하고, 몇 가지 알고리즘들을 심층적으로 살펴본다. 또한 향후 전망과 계속 진행될 공모사업의 타임라인을 제시한다.

Optimal Design of Magnetic Levitation Controller Using Advanced Teaching-Learning Based Optimization (개선된 수업-학습기반 최적화 알고리즘을 이용한 자기부상 제어기의 최적 설계)

  • Cho, Jae-Hoon;Kim, Yong-Tae
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.64 no.1
    • /
    • pp.90-98
    • /
    • 2015
  • In this paper, an advanced teaching-learning based optimization(TLBO) method for the magnetic levitation controller of Maglev transportation system is proposed to optimize the control performances. An attraction-type levitation system is intrinsically unstable and requires a delicate control. It is difficult to completely satisfy the desired performance through the methods using conventional methods and intelligent optimizations. In the paper, we use TLBO and clonal selection algorithm to choose the optimal control parameters for the magnetic levitation controller. To verify the proposed algorithm, we compare control performances of the proposed method with the genetic algorithm and the particle swarm optimization. The simulation results show that the proposed method is more effective than conventional methods.

Fuzzy Controller Modeling for Electromagnetic Levitation Systems based on Clustering Algorithm (클러스터링에 기초한 자기부상시스템의 퍼지제어기 모델링)

  • Kim, Min-Soo;Byun, Yeun-Sub;Lee, Kwan-Sup
    • Proceedings of the KSR Conference
    • /
    • 2006.11a
    • /
    • pp.145-159
    • /
    • 2006
  • This paper describes the development of a clustering based fuzzy controller of an electromagnetic suspension vehicle using gain scheduling method and Kalman filter for a simplified single magnet system. Electromagnetic suspension vehicle systems are highly nonlinear and essentially unstable systems For achieving the levitation control of the DC electromagnetic suspension system, we considered a fuzzy system modeling method based on clustering algorithm which a set of input/output data is collected from the well defined Linear Quadratic Gaussian(LQG) controller. Simulation results show that the proposed clustering based fuzzy controller methodology robustly yields uniform performance with adequate gap response over the mass variation range.

  • PDF

Robust Control of Electromagnetic Levitation System with Uncertain Coil Resistor (코일 저항의 불확실성을 가지는 자기 부상 시스템의 강인 제어)

  • Jeong, Min-Gil;Choi, Ho-Lim
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.64 no.7
    • /
    • pp.1096-1103
    • /
    • 2015
  • Electromagnetic levitation system(EMLS) is one of the well known nonlinear systems due to its high degree of nonlinearities. Moreover, when there are uncertain parameters in EMLS, it is not easy to have an accurate control of EMLS. In this paper, we first apply a standard input-output feedback linearzing controller to EMLS and investigate the possible control error caused by uncertain coil resistor. Then, as a remedy, we design and apply a robust controller using Lyapunov redesign technique to deal with this uncertain coil resistor in the system. The validity of our robust controller is verified via system analysis and experimental results.

A Study on Four Magnetic Levitation Actuator Control (4개의 자기 부상 액츄에이터 제어에 관한 연구)

  • Won, Jin-Kuk;Mon, Ji-Woo;Cho, Yun-Hyun;Koo, Dae-Hyun
    • Proceedings of the KIEE Conference
    • /
    • 2008.07a
    • /
    • pp.940-941
    • /
    • 2008
  • Recently, there are a great many research for magnetic levitation(Maglev) system. Maglev system is eco-friendly used in a place that is not friction. But Maglev is system that inductance is changed according to air-gap, so this is unstable system. In this paper, we simulate 1 Maglev actuator Control and we do an experience on 4 Maglev actuator system control. however, we get a problem of 4 maglev actuator control, because Maglev is 3 DOF(Degree of Freedom). so we control average err of 2 Maglev actuator in the rear.

  • PDF

Design of TLBO-based Optimal Fuzzy PID Controller for Magnetic Levitation System (자기부상시스템을 위한 교수-학습 최적화 알고리즘 기반의 퍼지 PID 제어기 설계)

  • Cho, Jae-Hoon;Kim, Yong Tae
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.66 no.4
    • /
    • pp.701-708
    • /
    • 2017
  • This paper proposes an optimum design method using Teaching-Learning-based optimization for the fuzzy PID controller of Magnetic levitation rail-guided vehicle. Since an attraction-type levitation system is intrinsically unstable, it is difficult to completely satisfy the desired performance through the conventional control methods. In the paper, a fuzzy PID controller with fixed parameters is applied and then the optimum parameters of fuzzy PID controller are selected by Teaching-Learning optimization. For the fitness function of Teaching-Learning optimization, the performance index of PID controller is used. To verify the performances of the proposed method, we use a Maglev model and compare the proposed method with the performance of PID controller. The simulation results show that the proposed method is more effective than conventional PID controller.

Boundary Layer Separation Control with Fairing at the Junction of 3D Wings Under Ground Effect (페어링을 이용한 지면효과를 받는 3차원 날개 접합부의 경계층 박리 제어)

  • Cho Ji. H.;Moon Young. J.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2005.04a
    • /
    • pp.57-64
    • /
    • 2005
  • Aerodynamic characteristics of three-dimensional wings in ground effect for Aero-levitation Electric Vehicle(AEV) are numerically investigated for various fairing shapes at the junctions of 3D Wings. Numerical results show that a sizeable three-dimensional comer flow separation occurs with formation of an arch vortex at the junction of main and vertical wings, and also that this is predicted the main cause of the high lift-to-drag(L/D) reduction rate of the main wing. To avoid the comer flow separation, the main idea of this study is to reduce the cross section gradient of the comer flow tube near the trailing edge for various fairing shapes. Improvements on L/D ratios of the wings are pursued by breaking the coherence of superimposed adverse pressure gradients at the wing junction when the cross section gradient is changed slowly at the trailing edge.

  • PDF

Development of propulsion system for the Urban Transit Maglev System (도시형 자기부상열차 적용을 위한 추진제어장치의 개발)

  • Lee Eun Kyu;Kim Hyung Chul;Song Young Sin;Choi Jae Ho
    • Proceedings of the KIPE Conference
    • /
    • 2002.07a
    • /
    • pp.86-90
    • /
    • 2002
  • In this paper, traction system for urban transit maglev system is proposed. Using vector control strategy to control magnitude and frequency of output voltage transiently is general. But in case of traction system for railway vehicle, it is impossible that adapt vector control because there is one-pulse mode in a high speed region. So this paper proposes the control strategy using vector control in a low speed region and slip frequency control in a high speed region. And also proposes overmodulation method that makesto change in one-pulse mode softly. The performance of traction system will be verified by simulation results using ACSL.

  • PDF