• 제목/요약/키워드: 부분최소자승

검색결과 123건 처리시간 0.025초

신경회로망 기반 비선형 다변수 자기동조 PID 제어기의 설계 (Design of a nonlinear Multivariable Self-Tuning PID Controller based on neural network)

  • 조원철
    • 전자공학회논문지SC
    • /
    • 제44권6호
    • /
    • pp.1-10
    • /
    • 2007
  • 본 논문에서는 비선형 다변수 시스템에 적응할 수 있는 신경회로망을 이용한 PID 구조를 갖는 직접 다변수 자기동조 제어기를 제안한다. 제어기에 적용되는 플랜트는 잡음, 시간지연과 상호결합항이 존재하며 파라미터가 변하는 비선형 다변수 시스템이다. 비선형 다변수 시스템은 선형부분과 비선형부분으로 분리한 형태로 구성되며, 선형제어기는 외부환경 변화에 적응할 수 있는 PID 제어기 특성을 가진 자기동조 PID 제어기 이다. 선형부분의 제어기 파라미터는 순환최소자승법으로 직접 추정하고 비선형 부분의 파라미터는 신경회로망으로 추정한다. 그리고 각 부분에서 추정한 파라미터를 합한 후 비선형 다변수 일반화 자기동조 제어기의 제어법칙에 적용한다. 제어 알고리듬의 타당성을 확인하기 위해 시간 지연이 있고 일정한 시간이 경과한 후 시스템의 파라미터가 변하는 비선형 다변수 시스템에 대해 컴퓨터 시뮬레이션을 하였다. 또한 기존의 신경회로망을 이용한 직접 다변수 적응 제어기에 비해 효과적이다.

그룹 구조를 갖는 고차원 유전체 자료 분석을 위한 네트워크 기반의 규제화 방법 (Network-based regularization for analysis of high-dimensional genomic data with group structure)

  • 김기풍;최지윤;선호근
    • 응용통계연구
    • /
    • 제29권6호
    • /
    • pp.1117-1128
    • /
    • 2016
  • 고차원 유전체 자료를 사용하는 유전체 연관 분석에서는 벌점 우도함수 기반의 회귀계수 규제화 방법이 질병 및 표현형질에 영향을 주는 유전자를 발견하는데 많이 이용된다. 특히, 네트워크 기반의 규제화 방법은 유전체 연관성 연구에서의 유전체 경로나 신호 전달 경로와 같은 생물학적 네트워크 정보를 사용할 수 있으므로, Lasso나 Elastic-net과 같은 다른 규제화 방법들과 비교했을 경우 네트워크 기반의 규제화 방법이 보다 더 정확하게 관련 유전자들을 찾아낼 수 있다는 장점을 가지고 있다. 그러나 네트워크 기반의 규제화 방법은 그룹 구조를 갖고 있는 고차원 유전체 자료에는 적용시킬 수 없다는 문제점을 가지고 있다. 실제 SNP 데이터와 DNA 메틸화 데이터처럼 대다수의 고차원 유전체 자료는 그룹 구조를 가지고 있으므로 본 논문에서는 이러한 그룹 구조를 가지고 있는 고차원 유전체 자료를 분석하고자 네트워크 기반의 규제화 방법에 주성분 분석(principal component analysis; PCA)과 부분 최소 자승법(partial least square; PLS)과 같은 차원 축소 방법을 결합시키는 새로운 분석 방법을 제안하고자 한다. 새롭게 제안한 분석 방법은 몇 가지의 모의실험을 통해 변수 선택의 우수성을 입증하였으며, 또한 152명의 정상인들과 123명의 난소암 환자들로 구성된 고차원 DNA 메틸화 자료 분석에도 사용하였다. DNA 메틸화 자료는 대략 20,000여개의 CpG sites가 12,770개의 유전자에 포함되어 있는 그룹 구조를 가지고 있으며 Illumina Innium uman Methylation27 BeadChip으로부터 생성되었다. 분석 결과 우리는 실제로 암에 연관된 몇 가지의 유전자를 발견할 수 있었다.

소나무와 금강송의 수종식별을 위한 화학계량학적 접근 - 근적외선 분광법과 다변량분석을 이용한 수종 분류 - (Chemometrics Approach For Species Identification of Pinus densiflora Sieb. et Zucc. and Pinus densiflora for. erecta Uyeki - Species Classification Using Near-Infrared Spectroscopy in combination with Multivariate Analysis -)

  • 황성욱;이원희
    • Journal of the Korean Wood Science and Technology
    • /
    • 제43권6호
    • /
    • pp.701-713
    • /
    • 2015
  • 소나무와 금강송의 수종 분류를 위해 근적외선(NIR) 분광법과 주성분분석(PCA) 및 부분최소자승법 판별분석(PLS-DA)을 결합하여 수종 분류 모델을 설계하였다. 측정된 모든 NIR 스펙트럼을 이용하여 PCA를 실시한 결과 소나무와 금강송의 수종 분류는 불가능하였다. 그러나 2차 미분된 스펙트럼을 이용하여 시험편의 단면과 심 변재 구분에 따른 수종 분류에서는 변재부에서 수종 분류가 가능하였으며, 특히 방사단면의 변재에서는 명확하게 수종이 분류되었다. 그리고 개발된 PLS-DA 예측 모델을 통해 명확한 수종 분류가 가능하였다. 2차 미분으로 전처리된 스펙트럼을 이용하였을 때 가장 좋은 분류 결과 얻을 수 있었다. 2차 미분 스펙트럼을 이용한 예측 모델은 100%의 분류 정확도를 나타내었으며, 예측 모델의 $R_p{^2}$ 값은 0.86, RMSEP는 0.38로 나타났다. 전처리하지 않은 스펙트럼과 2차 미분 스펙트럼을 이용한 예측 모델의 신뢰도는 유사하였다. 근적외선 분광법과 부분최소자승법 판별분석을 결합한 수종 분류 모델은 소나무와 금강송의 분류에 적합하였다.

유기물의 인화점 예측을 위한 부분최소자승법과 SVM의 비교 (Comparison of Partial Least Squares and Support Vector Machine for the Flash Point Prediction of Organic Compounds)

  • 이창준;고재욱;이기백
    • Korean Chemical Engineering Research
    • /
    • 제48권6호
    • /
    • pp.717-724
    • /
    • 2010
  • 액체의 화재 및 폭발위험을 나타내는 가장 중요한 물성의 하나인 인화점의 실험 데이터는 그 필요에도 불구하고 실제로 데이터를 확보하는 것이 가능하지 않은 경우가 많다. 이 연구에서는 DIPPR 801에서 얻은 893개 유기물의 인화점 실험데이터로부터 인화점을 예측하는 부분최소자승법(PLS) 및 support vector machine(SVM) 모델을 만들고 비교하였다. 분자를 구성하는 각 구성요소들이 분자의 물성에 일정한 기여를 한다는 가정을 이용하여 분자의 물성을 예측하는 방법인 그룹기여법을 이용하여 65개 작용기가 이 예측모델의 독립변수가 되었고 분자량의 로그값이 추가되었다. 두 모델에서 결정해야 할 매개변수는 교차검증에서 계산된 오차를 이용하여 결정되었는데, SVM모델은 그 매개변수가 많아 particle swarm optimization을 이용한 최적화를 이용하였다. 훈련데이터의 선택이 예측성능에 영향을 줄 수 있어 임의로 100개의 데이터 세트를 생성하여 테스트하였다. 전체 데이터에 대해 계산된 평균절대오차는 PLS가 13.86~14.55였고, SVM이 7.44~10.26여서 SVM이 PLS에 비해 매우 우수한 예측성능을 보였다.

LMS 알고리즘을 이용한 형태학 필터의 최적화 방안에 관한 연구 (Optimal Grayscale Morphological Filters Under the LMS Criterion)

  • 이경훈;고성제
    • 한국통신학회논문지
    • /
    • 제19권6호
    • /
    • pp.1095-1106
    • /
    • 1994
  • 본 논문에서는 최소자승오차법(LMSE, least mean square error)을 이용하여 function processing(FP) 형태학 필터를 최적화하는 알고리즘을 제안한다. Erosion이나 dilation 연산들은 원하는 신호와 실제 필터의 출력 신호 사이의 평균자승오차(MSE, mean square error)를 최소화하는 농담(農談) 구조요소(GSE. grayscale structuring element)를 결정함으로써 최적화 된다. 본 논문에서는 LMS 트레이닝 알고리즘을 형태학 필터의 최적화에 적용하기 위하여 스텝 사이즈 매개변수 n가 만족해야 하는 조건을 보이고, 이를 이용하여 erosion이나 dilation 형태학 필터들의 최적 GSE를 결정할 수 있음을 보였다. 또한, 본 논문에서는 행렬을 사용하여 복합 형상한 연산들을 소역 행열 연산자로 새롭게 정의하고, 이소역 연산들에 LMS 알고리즘과 back-propagation 알고리즘을 적용하여 복합 형태학 필터들을 최적화할 수 있음을 보였다. 실험 부분에서는 제안된 최적 형상학 필터들을 2-D 영상에 적용한 결과를 보였다.

  • PDF

부분최소자승법을 이용한 혈압 측정에 관한 연구 (A Study on Measurement of Blood Pressure by Partial Least Square Method)

  • 김용주;남은혜;최창현;김종덕
    • Journal of Biosystems Engineering
    • /
    • 제33권6호
    • /
    • pp.438-445
    • /
    • 2008
  • The purpose of this study was to develop a measurement model based on PLS (Partial least square) method for blood pressures. Measurement system for blood pressure signals consisted of pressure sensor, va interface and embedded module. A mercury sphygmomanometer was connected with the measurement system through 3-way stopcock and used as reference of blood pressures. The blood pressure signals of 20 subjects were measured and tests were repeated 5 times per each subject. Total of 100 data were divided into a calibration set and a prediction set. The PLS models were developed to determine the systolic and the diastolic blood pressures. The PLS models were evaluated by the standard methods of the British Hypertension Society (BHS) protocol and the American Association for the Advancement of Medical Instrumentation (AAMI). The results of the PLS models were compared with those of MAA (maximum amplitude algorithm). The measured blood pressures with PLS method were highly correlated to those with a mercury sphygmomanometer in the systolic ($R^2=0.85$) and the diastolic blood pressure ($R^2=0.84$). The results showed that the PLS models were the effective tools for blood pressure measurements with high accuracy, and satisfied the standards of the BHS protocol and the AAMI.

고분자 전해질 연료전지용 막가습기의 상대습도 추정을 위한 소프트센서 개발 (Soft Sensor Development for Predicting the Relative Humidity of a Membrane Humidifier for PEM Fuel Cells)

  • 한인수;신현길
    • 한국수소및신에너지학회논문집
    • /
    • 제25권5호
    • /
    • pp.491-499
    • /
    • 2014
  • It is important to accurately measure and control the relative humidity of humidified gas entering a PEM (polymer electrolyte membrane) fuel cell stack because the level of humidification strongly affects the performance and durability of the stack. Humidity measurement devices can be used to directly measure the relative humidity, but they cost much to be equipped and occupy spaces in a fuel cell system. We present soft sensors for predicting the relative humidity without actual humidity measuring devices. By combining FIR (finite impulse response) model with PLS (partial least square) and SVM (support vector machine) regression models, DPLS (dynamic PLS) and DSVM (dynamic SVM) soft sensors were developed to correctly estimate the relative humidity of humidified gases exiting a planar-type membrane humidifier. The DSVM soft sensor showed a better prediction performance than the DPLS one because it is able to capture nonlinear correlations between the relative humidity and the input data of the soft sensors. Without actual humidity sensors, the soft sensors presented in this work can be used to monitor and control the humidity in operation of PEM fuel cell systems.

가시광선 / 근적외선 분광 분석법을 이용한 쌀의 정백수율 측정 (Determination of Rice Milling Ratio by Visible / Near-Infrared Spectroscopy)

  • 김재민;민봉기;최창현
    • Journal of Biosystems Engineering
    • /
    • 제22권3호
    • /
    • pp.333-342
    • /
    • 1997
  • The objective of this research was to develop model equations for measuring rice milling ratio by using visible / HIR spectroscopy. Twelve kinds of brown rice(n = 149) were milled to obtain various milling ratio ranged from 86% to 94%. Visible/NIR spectra were collected with a spectrophotometer with sample transport module. The reflectance and transmission spectra were measured in the range of 400~2, 500nm and 600~1, 400nm, respectively, with 2 nm intervals. Multiple linear regression(MLR), Partial least square (PLS), and Artificial neural network(ANN) were used to develop models. Model developed with reflectance spectra showed better prediction results then those with transmission spectra. The MLR model with six-wavelength obtained from first derivative spectra gave to the best results for measuring the rice milling ratio(SEP = 0.535, , $r^2$ = 0.980). The PLS model(SEP = 0.604, $r^2$= 0.976) and ANN model(SEP = 0.566, $r^2$= 0.978) also can be used to determine the rice milling ratio effectively.

  • PDF

사이버 가정학습에 대한 학습자의 태도 및 만족도 분석 (Analysis of Students' Attitude and Satisfaction Level toward Afterschool e-HomeStudy)

  • 김미량;김진숙
    • 한국콘텐츠학회논문지
    • /
    • 제7권10호
    • /
    • pp.44-58
    • /
    • 2007
  • 본 연구는 중고등학생을 대상으로 방과 후 집에서 이루어지는 사이버 가정학습에 대한 태도와 만족도에 관한 영향요인을 분석하는 데 주된 목적이 있다. 이를 위해 사이버 가정학습에 대한 태도와 만족도에 영향을 미치는 요인으로 유용성, 가시성, 주관적 규범 등을 도입하고,유용성은 다시 콘텐츠 질, 상호작용, 촉진 조건 등에 의해 영향을 받는 다는 연구가설을 설정하고, 고등학생을 대상으로 수집한 설문자료를 토대로 하여 실증적으로 분석하였다. 검증결과 학습태도와 자기주도성이 학습만족에 영향을 미치며, 학습태도는 주관적 규범, 가시성, 유용성 등이 모두 영향을 미치며, 유용성은 다시 학습콘텐츠, 상호작용에 의해 영향을 받음을 알 수 있었다 촉진조건은 별다른 영향을 미치지 않는 것으로 나타났다.

온라인 진화형 TSK 퍼지 식별 (Online Evolving TSK fuzzy identification)

  • 김경중;박창우;김은태;박민용
    • 한국지능시스템학회논문지
    • /
    • 제15권2호
    • /
    • pp.204-210
    • /
    • 2005
  • 본 논문에서는 TSK 퍼지 모델을 위한 온라인 식별 알고리즘을 제안한다. 제안된 알고리즘은 거리를 이용하여 TSK 퍼지 모델에 대한 전건부의 구조를 식별하고, 재귀적 최소자승법으로 후건부를 구성하는 부분 선형 함수들의 매개 변수를 구한다. 대부분의 다른 연구들에서는 전건부의 구조를 구하기 위해서 클러스터링을 수행할 때 입력 공간에서만 고려하였으나. 제안된 알고리즘에서는 입력 공간 및 출력 공간 모두에서 고려하여, 아웃라이어를 효과적으로 배제할 수 있다. 기존의 대부분의 다른 알고리즘에서 샘플 데이터자체를 클러스터의 중심으로 사용하여 잡음에 민감한 단점이 있었으나, 제안된 알고리즘에서는 데이터 자체를 클러스터의 중심으로 사용하지 않아 잡음에 대해 민감하지 않다. 제안된 알고리즘은 많은 데이터의 저장을 필요로 하지 않고, 한 번 통과함으로써 모델을 구할 수 있다.