본 논문에서는 주성분 회귀법과 부분최소자승 회귀법을 비교하여 보여준다. 이 비교의 목적은 선형형태를 보유한 근적외선 분광 데이터의 분석에 사용할 수 있는 적합한 예측 방법을 찾기 위해서이다. 두 가지 데이터 마이닝 방법론인 주성분 회귀법과 부분최소자승 회귀법이 비교되어 질 것이다. 본 논문에서는 부분최소자승 회귀법은 주성분 회귀법과 비교했을 때 약간 나은 예측능력을 가진 결과를 보여준다. 주성분 회귀법에서 50개의 주성분이 모델을 생성하기 위해서 사용지만 부분최소자승 회귀법에서는 12개의 잠재요소가 사용되었다. 평균제곱오차가 예측능력을 측정하는 도구로 사용되었다. 본 논문의 근적외선 분광데이터 분석에 따르면 부분최소자승회귀법이 선형경향을 가진 데이터의 예측에 가장 적합한 모델로 판명되었다.
본 논문에서는, 적응 간섭 제거기(AIC : adaptive interference canceller)에 사용되는 적응 알고리즘 중 계산량이 적고, 하드웨어적 복잡성이 낮은 최소 평균 자승(LMS)알고리즘의 적응화 상수(constant step size)를 여러 개 사용하여 빠른 수렴 속도와 낮은 평균 자승 에러를 가지는 방법을 제안한다. 최소 평균 자승 알고리즘에서 적응화 상수는 수렴속도와 평균 자승 에러를 제거하는데, 적응화 상수가 증가할수록 수렴속도가 빨라지는 반면, 평균 자승 에러는 증가하게 된다. 이 논문에서는 수렴속도를 증가하는 동시에 평균 자승 에러를 줄이기 위해, 최소 평균 자승 알고리즘에서 세 개의 적응화 상수를 가지는 새로운 검출기를 제안한다. 이 구조에서, 매 반복횟수에 따른 각 그룹 출력 값들을 가지고, 선택(selection)부분에서 평균 자승 에러들을 비교하며, 가장 작은 평균 자승 에러를 나타내는 그룹의 에러 값과 필터 계수 값들이 선택되어져 여러 적응화 상수 최소 평균 자승 알고리즘(several step size LMS algorithm)부분에서 각 그룹의 필터 계수를 갱신하는데 필요한 정보로 이용된다.
훼손된 타원 및 복잡한 형태의 영상에서 타원 검출에 최소자승법(LSM : Least Square Method)을 적용할 수 있는데 이는 데이터가 비정규 오류 분포를 따르거나 특이한점들이 있는 상태에서는 신뢰할 수 있는 결과를 얻을 수 없다. 특히 최소자승법은 훼손된 부분을 데이터가 없는 것으로 가정 하고 모든 데이터를 동일한 비중으로 연산하므로 훼손된 부분은 더욱 훼손된 모양으로 검출되는 문제점 있다. 본 논문에서 변형된 최소자승 법(MLSM: Modified Least Square Method)이란 훼손부분의 가까운점에 큰 비중을 둠으로 원래의 모양에 접근하는 형상(feature)의 타원을 검출하려는 것으로 훼손점 부근의 2점과 그외 중요한 l점을 강제로 만족하는 방법이다. 3점을 만족시키는 제한 조건을 주고 2개의 파라미터는 최소자승법으로 구하고, 나머지 3개는 제한 조건으로 구하여 타원 검출에 적용한 결과 실제 영상에서 타원의 검출 및 판별에 좋은 효과가 있었으며, 특히 인간의 치열의 곡선 모양을 결정하는테 좋은 효과가 있음을 보였다.
Journal of the Korean Data and Information Science Society
/
제22권5호
/
pp.931-940
/
2011
분류분석은 학습표본으로부터 분류규칙을 도출한 후 새로운 표본에 적용하여 특정 범주로 분류하는 방법이다. 데이터의 복잡성에 따라 다양한 분류분석 방법이 개발되어 왔지만, 데이터 차원이 높고 변수간 상관성이 높은 경우 정확하게 분류하는 것은 쉽지 않다. 본 연구에서는 데이터차원이 상대적으로 높고 변수간 상관성이 높을 때 강건한 분류방법을 제안하고자 한다. 부분최소자승법은 연속형데이터에 사용되는 기법으로서 고차원이면서 독립변수간 상관성이 높을 때 예측력이 높은 통계기법으로 알려져 있는 다변량 분석기법이다. 벌점 부분최소자승법을 이용한 분류방법을 실제데이터와 시뮬레이션을 적용하여 성능을 비교하고자 한다.
고분자전해질 연료전지 스택의 성능 및 주요 운전 변수를 예측하기 위해 부분최소자승법과 인공신경망의 두 가지 데이터 기반 모델링 기법을 제시한다. 30 kW급 고분자전해질 연료전지 스택 실험으로부터 확보한 데이터를 사용하여 부분최소자승 및 인공신경망 모델들을 구성한 후 각 모델의 예측 성능 및 계산 시간을 비교하였다. 모델의 복잡성을 줄이기 위해 부분최소자승법에 기초한 VIP(Variable Importance on PLS Projections) 선정기준을 모델링 절차에 포함하여, 초기 입력변수의 집합으로부터 모델링에 필요한 입력변수들을 선정하였다. 모델링 결과, 인공신경망이 스택의 평균 셀전압과 캐소드(cathode) 출구 온도를 예측하는데 있어서, 부분최소자승법 보다 우수한 성능을 보였다. 그러나 부분최소자승법 또한 입력변수와 출력변수 간에 선형적 상관관계만을 모델링 할 수 있음에도 불구하고 비교적 만족할 만한 예측 성능을 나타냈다. 모델의 정확도와 계산속도의 요구조건에 따라 두 모델링 기법은 고분자전해질 연료전지의 설계 및 운전 분야의 성능 예측, 온라인 및 오프라인 최적화, 제어 및 이상 진단을 위해 적용될 수 있을 것으로 판단된다.
본 논문에서는 독립적으로 모델링되어 절점 불일치 경계면이 존재하는 유한요소 부분구조물들로 구성된 복합 구조시스템의 통합적인 연계해석을 위해 이동최소자승 경계접합법을 제안한다. 제안된 이론을 합성함수 구성 및 근사화 과정을 통해 설명하고, 새로 제안된 경계접합법의 타당성, 수렴성 및 효율성을 고찰하기 위해 각종 수치실험을 수행한다. 패치 테스트, 수렴성 조사를 통해 제안된 이론의 타당성을 보이고, 각종 통합 연계해석 수치예제를 통해 격자 재생성이나 추가적 미지수의 도입이 필요 없는 이동최소자승 경계접합법의 실제적 효율성을 입증한다.
산업체 공정과정에서 타겟품질변수의 실시간 예측과 관리는 품질제고, 수익율 향상에 중요한 관건이 된다. 본 연구는 내지문강판의 코팅두께를 비파괴적이고 신속한 방법으로 예측하여 균일한 품질의 강판을 생산하기 위해 UV스펙트럼데이터를 이용한 최적예측모델을 개발하고자 한다. 부분최소자승법에서 변수중요도척도를 이용한 변수선택방법은 노이즈성 영역의 독립변수를 줄임으로써 예측정확도는 높일 수 있으며, 스펙트럼데이터의 경우 원데이터보다 적절한 데이터전처리가 예측정확도를 높이는 정보를 제공하기도 한다. 본 연구에서는 부분최소자승법 예측모텔에서 변수선택방법과 데이터전처리효과가 내지문강판 코팅두께 예측정확도 향상에 기여하는 결과를 제공하고, 스펙트럼 데이터를 이용한 품질변수 예측모델 개발 시 적용할 수 있는 일반적인 변수선택방법과정을 제안한다.
본 연구는 라만 분광법과 부분최소자승법을 이용하여 불량 분말식품을 비파괴적으로 검출할 수 있는 기술을 개발하기 위해 수행되었다. 향신료와 건강보조식품 등으로 소비가 증가하고 있는 마늘과 생강분말을 실험대상으로 선정하고 옥수수 전분을 농도별로 혼합하여 시료를 제작하였다. 라만 반사스펙트럼과 부분최소자승법을 이용하여 불량 분말식품에 혼합된 옥수수 전분의 농도를 예측하기 위한 모델을 개발하고 교차검증을 통해 그 성능을 평가하였다. 또한 변수중요도척도를 이용하여 예측모델의 개발에 기여도가 높은 라만스펙트럼을 선정한 후 이 스펙트럼을 이용하여 새로운 예측모델을 개발하였다. 그 결과 전체 라만 스펙트럼의 약 1/3에 해당하는 스펙트럼 데이터만을 이용하여 전체 라만 스펙트럼을 이용하여 개발된 예측모델과 같은 성능을 갖는 모델을 개발하는 것이 가능하였다.
차선검출시스템은 지능형 차량 시스템의 중요한 요소이다. 차선검출 시, 주변 환경과 날씨의 변화 때문에 차선검출은 다양한 어려움에 직면하게 된다. 본 논문에서는 차선검출 및 추적을 위해 다양한 환경에서도 안정적으로 동작하는 간단하면서 효율적인 방법을 제안한다. 제안된 방법에서는 차선을 추적하고 차선의 기울기를 수정하기 위해 확률적 허프 변환(Probabilistic Hough Transform, PHT)과 최소자승법(Least-square method, LSM)를 이용한다. 일반적으로 차량의 내부에 설치된 카메라로부터 획득된 영상은 영상의 하단부분에서 차선이 비교적 뚜렷이 나타나고, 주변의 간섭을 적게 받는다는 가정 하에 제안된 방법에서는 차선검출 및 추적의 효율성을 증대시키기 위해 영상의 하단부분에 관심의 대상이 되는 두 개의 영역을 설정한다. 제안된 방법의 효율성을 입증하기 위해 정지영상과 비디오영상을 사용하여 실험하였고, 실험결과 제안된 방법이 강건하고, 신뢰성있는 결과를 얻었음을 보였다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.