• Title/Summary/Keyword: 부력유동

Search Result 98, Processing Time 0.021 seconds

COMPUTATIONAL ASSESSEMENT OF OPTIMAL FLOW RATE FOR STABLE FLOW IN A VERTICAL ROTATING DISk CHEMICAL VAPOR DEPOSITION REACTOR (회전식 화학증착 장치 내부의 유동해석을 통한 최적 유량 평가)

  • Kwak, H.S.
    • Journal of computational fluids engineering
    • /
    • v.17 no.1
    • /
    • pp.86-93
    • /
    • 2012
  • A numerical investigation is conducted to search for the optimal flow rate for a rotating-disk chemical vapor decomposition reactor operating at a high temperature and a low pressure. The flow of a gas mixture supplied into the reactor is modeled by a laminar flow of an ideal gas obeying the kinetic theory. The axisymmetric two-dimensional flow in the reactor is simulated by employing a CFD package FLUENT. With operating pressure and temperature fixed, numerical computations are performed by varying rotation rate and flow rate. Examination of the structures of flow and thermal fields leads to a flow regime diagram illustrating that there are a stable plug-like flow regime and a few unfavorable flow regimes induced by mass unbalance or buoyancy. The criterion for sustaining a plug-like flow regime is discussed based on a theoretical scaling argument. Interpretation of the flow regime map suggests that a favorable flow is attainable with a minimum flow rate at the smallest rotation rate guaranteeing the dominance of rotation effects over buoyancy.

The Study of the Oceanic Environment Variations in the Artificial Upwelling Area (인공 용승 해역의 해양 환경 변화에 관한 연구)

  • Kim, Dong-Sun;Hwang, Suk-Bum;Kim, Sung-Hyun;Bae, Sang-Wan;Kheawwongjan, Apitha
    • Proceedings of KOSOMES biannual meeting
    • /
    • 2008.05a
    • /
    • pp.147-151
    • /
    • 2008
  • In Southern Sea of Korea, there are upwelling area where artificial seamount were built and the environment variations (temperature, salinity, nutrient and current) of before and after built seamount were observed between 2002 and 2007. In 2002, before the seamount was built, there had stratification at 20-30m. And in 2007, seamount was built, stratification of the seamount at the front and back of it were changed by 10-40 m and 20-30 m, respectively. To know the reason of this results, we used temperature and salinity using Brunt-Vaisala Frequency and horizontal current using vertical shear and relative vorticity. They showed upwelling was mainly reason that changed the ocean environment.

  • PDF

The Structure of the Axisymmetric turbulent Diffusion Flame -( I ) Flow Measurement in Isothermal Field- (재순환 영역이 있는 축대칭 난류확산화염의 구조 -( I ) 비연소 유동장 측정 결과-)

  • 이병무;신현동
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.8 no.4
    • /
    • pp.328-334
    • /
    • 1984
  • 본 연구에서는 기하학적으로는 물론이며 유동 장체가 축대칭이 되고 재순환 영역이 있는 노즐을 제작하여 우선 연구의 1차 단계로서 연소가 없을 경우 시간 평균 유속 및 난류 성분을 레이져 도플러 유속계로 비교적 정밀히 측정한후, 노즐 유체와 주위공기류와의 시간 평균 혼합특성을 구명하기 위하여 가스크로마토그라프에 의하여 농도 분포를 측정, 모델 검토를 위한 기초 데이타 제공과 실험용으로 채용한 노즐류의 구조를 구명하고저 한다. 특히 노즐유체를 수소/질소 혼합기인 경우와 공기를 사용 한 양 경우를 비교, 검토하므로써 부력효과에 대한 평가를 시도하였다.

Rotating Flows in a Circular Cylinder with Unstable Stratification (불안정 성층화를 가진 원통형 용기 내의 회전유동에 관한 연구)

  • Kim, Jae-Won
    • Journal of computational fluids engineering
    • /
    • v.3 no.2
    • /
    • pp.27-38
    • /
    • 1998
  • Rotating flow of a stratified fluid contained in a circular cylinder with unstable temperature gradient imposed on the side wall of it has been numerically studied. The temperatures at the endwall disks are constant. The top disk of the container is coider than that of the bottob disk, as much as the temperature difference n${\Delta}$T, (0${\leq}$n${\leq}$3). Flows in the vessel are driven by an impulsive rotation of the hot bottom disk with respect to the central axis of the cylinder. Flow details have been acquired. For this flow, the principal balance in the interior core is characterized by a relationship between the radial temperature gradient and the vertical shear in the azimuthal velocity. As the buoyancy effect becomes appreciable, larger portions of the meridional fluid transport are long-circuit from the bottom disk to the interior region via the side wall.

  • PDF

Animation of Bubbles in Liquid (액체 속 공기방울의 애니메이션)

  • Hong, Jeong-Mo;Kim, Chang-Hun
    • Journal of the Korea Computer Graphics Society
    • /
    • v.9 no.1
    • /
    • pp.1-2
    • /
    • 2003
  • 본 논문에서는 액체와 기체가 상호작용 하는 현상들에 대한 새로운 유체 애니메이션 기법을 액체 속 공기방울의 예를 사용하여 제시한다. 기존의 자유표면 시뮬레이션 기법들과는 달리 액체와 기체를 함께 시뮬레이션 할 경우에는 기체의 유동과 액체의 유동을 동시에 다루어야 하며 비중 차에 의한 부력과 경계면에서의 표면장력 등을 추가적으로 고려해야 한다. 유체의 토폴로지 변화를 쉽게 다루면서도 수치적 분산을 막기 위하여 유체 역학 분야의 VOF (Volume of Fluid) 기법과 프론트 추적 (Front-tracking) 기법을 혼합하여 사용하였다. 액체와 기체의 경계면은 마칭 큐브즈 알고리즘을 사용하여 폴리곤으로 복원된 후 버텍스 쉐이더 기술들을 사용하여 액체-기체 경계면의 광학적인 특성을 표현할 수 있었다.

  • PDF

Multiple Solutions for Steady State Natural Convection adjacent to an Inclined Isothermal Flat Plate in the Region of Largely Downflow (하향유동 영역에서 경사 등온평면에 의하여 야기된 정상상태 자연대류의 다중해)

  • 유갑종;이택식;조승환
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.15 no.3
    • /
    • pp.1011-1020
    • /
    • 1991
  • 본 연구에서는 하향유동영역에서 수직면으로부터 경사각이 60˚ 이하인 경사 등온면이 저온의 물속에 잠겨 있을때 일어나는 다중정상상태 영역을 밝혀내고, 이 영 역에서 경사각이 열전달, 온도분포, 속도분포, 부력분포 및 누셀트 수에 미치는 영향 을 구명하였다. 또 해석방법은 이제까지 발표된 연구결과와 비교검토하기 위하여 기 존 논문에서와 같이 상이해석을 사용하였다.

Experimental Study of Natural Convection for Magnetic Fluids in Annular Pipes Under the Influence of External Magnetic Fields (이중원관내 자성유체의 외부자장에 대한 자연대류의 실험적 연구)

  • 서이수;박정우;이준희
    • Journal of the Korean Magnetics Society
    • /
    • v.11 no.6
    • /
    • pp.245-249
    • /
    • 2001
  • Natural convection of a magnetic fluid is different from that of Newtonian fluids because magnetic body force exists in an addition to gravity and buoyancy. In this paper, natural convection of a magnetic fluids (W-40) in annular pipes was studied by experimentally. Inside wall was kept at a constant temperature (25 $^{\circ}C$), and outside wall was also held at a constant but lower temperature (20 $^{\circ}C$). The magnetic fields of various magnitude were applied up. This study has resulted in the following fact that the natural convection of a magnetic fluids was controlled by the direction and intensity of the magnetic fields.

  • PDF

Basic Investigation for the Development of Cleaning Technology with Ejector (이젝터를 이용한 세정기술 개발의 기초연구)

  • Park, Sang Kyoo;Yang, Hei Cheon
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.41 no.1
    • /
    • pp.29-36
    • /
    • 2017
  • The paper presents a basic investigation for the development of cleaning technology employing an annular nozzle ejector for application to cleaning water supply and air bubble generation. The quantitative flow characteristics of the primary and suction flows, the qualitative visualization behavior of the mixed jet, and the percentage concentration of pesticide residual at different values of the ejector screw pitch were investigated. It was seen that the primary flow rate increased, while the mass ratio decreased with increase in screw pitch. Further, the mixed jet behaved like a buoyancy jet or horizontal bubbly jet, and the residual concentration of pesticide first decreased and then increased with increase in screw pitch.

Velocity Field Measurements of a Vertical Turbulent Buoyant Jet Using a PIV Technique (PIV 기법을 이용한 비등온 부력제트의 유동구조에 관한 연구)

  • Sin, Dae-Sik;Yun, Jeong-Hwan;Lee, Sang-Jun
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.25 no.5
    • /
    • pp.611-618
    • /
    • 2001
  • The flow characteristics of a turbulent buoyant jet were experimentally investigated using a single-frame PIV system. The Reynolds number based on the nozzle exit velocity and nozzle diameter was about Re=5$\times$10$^3$. The instantaneous velocity fields in the streamwise plane passing the jet axis were measured in the near field X/D <11 with and without the temperature gradient. By ensemble averaging the instantaneous velocity fields, the spatial distributions of mean velocity, vorticity, and higher-order statistics up to third order were obtained. The temperature difference of 10$\^{C}$ does not affect a significant influence to the flow structure in the near field, but the total entrainment rate is increased slightly. The entrainment rate shows a linear variation with the streamwise distance in the region after X/D=5.0.

A Numerical Study on Flows in a Rotating Serpentine Passage (회전하는 ㄹ자형 관내의 유동에 관한 수치해석 연구)

  • 허남건;조원국;윤성영;윤성영;김광호
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.17 no.6
    • /
    • pp.1621-1632
    • /
    • 1993
  • A numerical simulation is carried out on flows in a rotating serpentine flow passage, which models a cooling passage in a gas turbine blade, by using a 3-D FVM based TURBO-D program. When it is rotating, the flow field exhibits quite different aspects due to the effect of the Coriolis force. Especially the secondary flow field appearing in the cross-sectional area is very complex because of the combined effect of the Coriolis force and the centrifugal force in the curved area. Local Nusselt numbers are also obtained based on the Reynolds analogy and compared with the published experimental data showing a good agreement. The results of the present study can be applied to the design of cooling passages of a gas turbine blade.