• Title/Summary/Keyword: 부등 침하

Search Result 116, Processing Time 0.023 seconds

Analysis of Characteristics of Connected-pile Foundations for Transmission Tower according to Changes of Load and Connection Beam Conditions in Clay (점토지반에서 하중특성 및 연결보조건에 따른 송전철탑용 연결형 말뚝기초의 특성 분석)

  • Kyung, Doohyun;Lee, Junhwan;Paik, Kyuho;Kim, Youngjun;Kim, Daehong
    • Journal of the Korean Geotechnical Society
    • /
    • v.29 no.10
    • /
    • pp.5-18
    • /
    • 2013
  • The differential settlement between the foundations causes the critical damage on the transmission tower constructed in soft ground. Connected-pile foundation for transmission tower structures is an option to prevent the differential settlement. It consists of main foundations and connection beams that are placed between the individual foundations at each corner of tower. In this study, 24 model pile load tests were conducted at a construction site in jeonlabuk-do to investigate the effects of the connection beams on transmission tower foundation. In model tests, various load conditions and connection beam conditions were considered. As the test results, the displacements of connected-pile foundation differed in accordance with load directions. The settlements of connected-pile foundation decreased with the increased stiffness of connection beams, lateral load capacity decreased in accordance with load height, and the lateral load capacity on the failure criteria was similar regardless of load direction.

Analysis and Design of Mat Foundation for High -Ribe Buildings (초고층 건물의 전면기초(MAT 기초) 해석 및 설계)

  • Hong, Won-Gi;Hwang, Dae-Jin;Gwon, Jang-Hyeok
    • Geotechnical Engineering
    • /
    • v.11 no.2
    • /
    • pp.51-70
    • /
    • 1995
  • Types of foundation of high rise buildings are primarily determined by loads transmitted from super structure, soil bearing capacity and available construction technology, The use of deep foundation of the buildings considered in this study due to the fact that rock of enough bearing capacity is not found down until 90~l00m. When a concentration of high soil pressure must be distributed over the entire building area, when small soft soil areas must be bridged, and when compressible strata are located at a shallow depth, mat foundation may be useful in order to have settlement and differential settlement of variable soils be minimized. The concept of mat foundation will also demonstrate some difficulties of applications if the load bearing demand directly carried down to the load -bearing strata exceeds the load -bearing capacity. This paper introduces both the analysis and design of mat type foundation for high rise buildings as well as the method-ology of modelling of the soil foundation, especially, engineered to redistribute the stress exceeding the soil bearing capacity. This process will result in the wide spread of stresses over the entire building foundation.

  • PDF

Probabilistic Analysis of Shallow Foundation Settlements (얕은기호 침하의 확률론적 해석)

  • 정두영;오병현
    • Geotechnical Engineering
    • /
    • v.9 no.3
    • /
    • pp.77-90
    • /
    • 1993
  • In the settlement analysis of shallow foundation soil properties, loads and soil strata involve many uncertainties so it is necessary to do analysis of settlement that considers the probabilistic properties of each variable. This study is performed to probabilistic analysis for settlement of shallow foundation consisted of individual footings by using Monte Carlo Method. To consider the uncertainty of variables, both the soil properties and loads are assumed to be normal distribution random variables and get settlement mean and coefficient of variation of individual footing. And the settlement of each individual footing is also assumed to be normal distribution. Settlement of each individual footing which considers the probability of soft soil pockets in soil strata follows Markov process. Then it is performed to do sensitivity analysis which is involved to excess probability of allowable criteria of maxi mum settlement and differential settlement according to varity of each variable. It is thought to be proper that the settlement analysis of shallow foundation should be analyzed considering uncertainty of variables and soil stratum conditions.

  • PDF

A Study on the Long-term Settlements Characterlistics and Settlement Prediction of Soft Ground in West-South Region (서남권 연약지반의 장기침하 특성과 침하예측에 관한 연구)

  • Lee, Seungho;Jung, Jisu;Ji, Younghwan;Kim, Sungmun
    • Journal of the Korean GEO-environmental Society
    • /
    • v.13 no.4
    • /
    • pp.77-91
    • /
    • 2012
  • Recently, construction of housing sites, complexes, roads, ports and airports is increasing for high-intensity use of the country and balanced development between regions. Presently, constructions are being conducted at soft ground. Consequently, engineering problems as long-term settlement of the ground, differential settlement, local structural damage have been reported consistently at construction site. In particular, long-term subsidence of the ground as various constructions and loads by the load will necessarily occur in the soft ground of west-south coast and inland coast. Therefore, in this study, regional proper analysis methods of the Hyperbole method, Hosino method, $\sqrt{S}$ method, Asaoka method etc as existing long-term settlement prediction methods have been examined and a study on new prediction method was conducted through deduction of a generalized equation. Correlation coefficients of soil properties and construction conditions has been analyzed and a matching coefficient of long-term settlement characteristics has been deducted. Comparison and analysis of monitoring data and numerical analysis results of 16 local area have been conducted.

Strategy for Improving the Resolution of Electrical-resistivity Inversions for Detecting Soft Ground at Shallow Depths (~ 10 m) (천부(약 10 m) 연약 지반 탐지를 위한 전기비저항 역산 해상도 향상 전략)

  • Jang, Hangilro;Song, Seo Young;Kim, Bitnarae;Nam, Myung Jin
    • The Journal of Engineering Geology
    • /
    • v.28 no.3
    • /
    • pp.367-377
    • /
    • 2018
  • This study introduces a DC resistivity inversion method that incorporates structural and inequality constraints to enhance the resolution of resistivity inversions, and presents sample inversion results with these constraints. In the constrained inversions, a base model is constructed from a layered model through interpretation of other geophysical data. Inversion tests establish that both the structural and inequality constraints produce better resistivity models than the unconstrained inversion. However, the inequality inversion not only reproduces the exact layered structure of the background, it reproduces conductive anomalies at a depth of ~ 10 m when an inexact base model of electrical resistivity is used.

Applications of Improved Low-Flow Mortar Type Grouting Method for Road Safety and Constructability in Dangerous Steep Slopes (급경사지 붕괴 위험지역의 도로 안전 및 시공성을 고려한 개선된 저유동 몰탈형 그라우팅공법 적용성 분석)

  • Choi, Gisung;Kim, Seokhyun;Kim, Nakseok
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.40 no.4
    • /
    • pp.409-415
    • /
    • 2020
  • Low-flow mortar injection method grouting technology was selected and the traffic area was preserved as much as possible in order to secure safety for road traffic when the outflow and subsidence of landfill occurred due to ground-water, and etc. In particular, the current existing method was newly improved since there are risks of damage such as hydraulic fracturing at the lower part of the road, spilling of soil particles on steep slopes, and bumps on the road due to excessive injection pressure during construction. This study was carried out at the site of reinforcement work on the road as a maintenance work for the danger zone for collapse of the steep slope of the 00 hill, which was ordered from the 00 city 00 province. The improved low-flow mortar type grouting method adopted a new automated grouting management system and especially, it composites the method for grouting conditions decision by high-pressure pre-grouting test and injection technology by AGS-controlled and studied about grouting effect analysis by using new technology. By applying the improved low-flow mortar type grouting method, it was possible to lay the groundwork for road maintenance work such as the prevention of subsidence of old roads, uneven subsidence of buildings and civil engineering structures, and of soil leakage of ground-water spills. Furthermore, the possibility of application on future grouting work not only for just construction that prevents subsidence of old roads but also for various buildings and civil engineering structures such as railroads, subways, bridges, underground structures, and boulder stone and limestone areas was confirmed.

Comparison of Super Structure-Sub Structure Separation Analysis and Unification Analysis about Building Structures (건축구조물의 상부구조-하부구조 분리해석과 일체해석의 비교분석)

  • Kim, Jae-Yo;Kim, Jin-Yong;Kang, Su-Min
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.29 no.1
    • /
    • pp.19-28
    • /
    • 2016
  • In the case of structural analysis for building structures, the super-structure and the sub-structure are analyzed by using separate structural models in the field because of time saving, facile result interpretation and easy analysis of dynamic behavior. However this separate structural model violated the compatibility condition of structural analysis and it can not consider the interaction of superand sub- structures. In the present study, the analysis results of this separate model were compared to those of the unified model of super- and sub- structures which can consider the interaction of super- and sub- structures and reflect the realistic boundary conditions. According to the comparison results, the the analysis model using separate models can underestimate the member force and deflection of structural members in the super-structures and overestimate the deflection and member force of sub-structures. Therefore, in the case of high-rise buildings, irregular shaped buildings, buildings which are expected to be affected by large differential settlement and remodeling buildings, the unified structural model for super- and sub- structures was recommended for structural analysis instead of the separate structural model.

Variation of Earth Pressure Acting on the Cut-and-Cover Tunnel Lining due to Geotextile Mat Reinforcement (지오텍스타일 매트의 설치에 의한 개착식 터널 라이닝에 작용하는 토압의 변화)

  • Bautista, F.E.;Park, Lee-Keun;Im, Jong-Chul;Joo, In-Gon
    • Journal of the Korean Geotechnical Society
    • /
    • v.23 no.3
    • /
    • pp.25-40
    • /
    • 2007
  • Excessive earth pressure is one of the major mechanical factors in the deformation and damage of Cut-and-Cover Tunnel lining in shallow tunnels and portals of mountain tunnels (Kim, 2000). Excessive earth pressure may be attributed to insufficient compaction and consolidation of backfill material due to self-weight, precipitation and vibration caused by traffic (Komiya et al., 2000; Taylor et al., 1984; Yoo, 1997). Even though there were a lot of tests performed to determine the earth pressure acting on the tunnel lining, unfortunately there were almost no case histories of studies performed to determine remedial measures that reduce differential settlement and excessive earth pressure. In this study the installation of geotextile mat was selected to reduce the differential settlement and excessive earth pressure acting on the cut-and-cover tunnel lining. In order to determine settlement and earth pressure reduction effect (reinforcement effect) of geotextile mat reinforcement, laboratory tunnel model tests were performed. This study was limited to the modeling of rigid circular cut-and-cover tunnel constructed at a depth of $1.0D\sim1.5D$ in loose sandy ground and subjected to a vibration frequency of 100 Hz. Model tests with varying soil cover, mat reinforcement scheme and slope roughness were performed to determine the most effective mat reinforcement scheme. Slope roughness was adjusted by attaching sandpaper #100, #400 and acetate on the cut slope surface. Mat reinforcement effect of each mat reinforcement scheme were presented by the comparison of earth pressure obtained from the unreinforced and mat reinforced model tests. Soil settlement reduction was analyzed and presented using the Picture Analysis Method (Park, 2003).

Effectiveness of Reinforcement for Transitional Zone between Tunnel and Earthwork Using the Large Sleeper (대형침목을 이용한 터널/토공 접속구간의 보강효과)

  • Choi, Chan-Yong;Lee, Jin-Wook;Kim, Hun-Ki
    • Journal of the Korean Society for Railway
    • /
    • v.13 no.2
    • /
    • pp.214-221
    • /
    • 2010
  • The transitional zone between tunnel and earthwork is one of the most vulnerable areas site for railway lines and because of differential settlement due to different stiffness of each supporting layer, it has to conducted a maintenance work constantly. In this study, it is conducted to compare the effect of reinforcement by wheel load and displacement of the sleepers after existing sleepers are replaced with the large sleepers for 20m long in-field transitional zone. Also, numerical parametric study using multi-layer elastic method has been performed to compare rail force, settlement and stresses of ballast while varying size and space of the sleeper. The field test and numerical results show that replacing the large sleepers improves about 10% of total settlement and coefficient of wheel force than conventional sleepers. Effectiveness of improvement is about 9.3%, 4%, 14.5% for rail seat force, settlement of sleepers and ballast pressure respectively with size of sleepers.

Safety Evaluation of the Settlement Amount of the Bridge Earthwork Transition Area Using the Ground Penetrating Radar in the Soft Ground Section (연약지반 구간에서 지표투과레이더 활용한 교량 접속부 침하량 안전 평가)

  • Jung, Gukyoung;Jo, Youngkyun;Kim, Sungrae
    • Journal of the Korean GEO-environmental Society
    • /
    • v.23 no.8
    • /
    • pp.17-22
    • /
    • 2022
  • To reduce the bump of bridge/earthwork transition area caused by the settlement of the soft ground during public use, the road agencies have been continuously overlay or repavement at those areas. In this study, the vehicle-mounted ground penetrating radar with 1GHz air-coupled antenna was used to estimate the settlement amount of those areas for nine bridges built in the soft ground. Results shows that it is possible to effectively measure the thickness of pavement up to a depth of 1 m on an asphalt road with ground penetrating radar technology that can inspect under the road surface. Distinctively deformation of the road surface, the variation in the thickness of the pavement measured at bridge/earth transition areas is equivalent to a minimum of 50 mm and a maximum of 600 mm, and there is a risk of cavity in the ground. The difference in the increased pavement thickness is 50~250 mm for each bridge connection, which may cause the differential settlement. In this study, by using the result of the ground penetration radar, a plan for improving drivability and maintenance of the settlement is suggested and applied to the field.