• Title/Summary/Keyword: 부동산 가격 예측

검색결과 46건 처리시간 0.026초

딥 러닝을 이용한 부동산가격지수 예측 (Predicting the Real Estate Price Index Using Deep Learning)

  • 배성완;유정석
    • 부동산연구
    • /
    • 제27권3호
    • /
    • pp.71-86
    • /
    • 2017
  • 본 연구의 목적은 딥 러닝 방법을 부동산가격지수 예측에 적용해보고, 기존의 시계열분석 방법과의 비교를 통해 부동산 시장 예측의 새로운 방법으로서 활용가능성을 확인하는 것이다. 딥 러닝(deep learning)방법인 DNN(Deep Neural Networks)모형 및 LSTM(Long Shot Term Memory networks)모형과 시계열분석 방법인 ARIMA(autoregressive integrated moving average)모형을 이용하여 여러 가지 부동산가격지수에 대한 예측을 시도하였다. 연구결과 첫째, 딥 러닝 방법의 예측력이 시계열분석 방법보다 우수한 것으로 나타났다. 둘째, 딥 러닝 방법 중에서는 DNN모형의 예측력이 LSTM모형의 예측력보다 우수하나 그 정도는 미미한 수준인 것으로 나타났다. 셋째, 딥 러닝 방법과 ARIMA모형은 부동산 가격지수(real estate price index) 중 아파트 실거래가격지수(housing sales price index)에 대한 예측력이 가장 부족한 것으로 나타났다. 향후 딥 러닝 방법을 활용함으로써 부동산 시장에 대한 예측의 정확성을 제고할 수 있을 것으로 기대된다.

부동산 매매지수와 전세지수 예측: 독립성분분석을 활용한 분석 (Forecasting Korean housing price index: application of the independent component analysis)

  • 박노진
    • 응용통계연구
    • /
    • 제30권2호
    • /
    • pp.271-280
    • /
    • 2017
  • 우리나라 뉴스에서 매일 빠지지 않는 내용은 아마도 부동산 경제에 관한 것이라고 생각된다. 많은 사람들은 부동산 가격의 변동에 관한 전문가들의 예측에 관심을 갖고 있다. 매매가격 혹은 전세가격을 예측하기위해 일반적으로 많이 사용되는 방법은 박스-젠킨스에 기반을 둔 자기회귀이동평균모형이다. 본 논문에서는 자기회귀모형과 다변량 자료분석에서 사용하는 독립성분분석을 결합하여 예측하는 방법을 시도하여 보았다. 매매가격과 전세가격을 두 개의 독립성분으로 재설정하고 독립성분들을 이용하여 예측한 후 역변환을 통해 매매가격과 전세가격을 예측하는 방법을 시도하였다. 그 결과 일반적인 자기회귀이동평균모형을 사용할 때 보다 독립성분을 활용한 예측이 실제 지수에 더 유사한 값들을 얻을 수 있음을 보였다.

생성 AI 기반 뉴스 기사 심리지수를 활용한 부동산 가격 예측 모델 (Predictive Model for Real Estate Prices Using Sentiment Index of news articles based on Generative AI )

  • 김수아;권미주;조수빈;김은수;김현희
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2023년도 추계학술발표대회
    • /
    • pp.1198-1199
    • /
    • 2023
  • 부동산 시장은 다양한 요인에 의해 가격이 결정되며 거시경제 변수뿐 만 아니라 뉴스 기사, SNS 등 다양한 비정형 데이터의 영향을 받는다. 특히 뉴스 기사는 국민들이 느끼는 경제 심리를 반영하고 있어 부동산 가격에 영향을 크게 미치는 변수라고 판단된다. 본 연구에서는 뉴스 기사의 세분화된 감정 분석을 통해 전통적인 분석 방법보다 더 의미 있는 결과를 얻을 수 있는 부동산 가격 예측 모델을 생성하였으며 뉴스 기사로부터 심리 지수를 산출하기 위해 생성 AI 를 활용하였다. 제안하는 매매가격지수 예측 모델을 통해 부동산 시장과 뉴스 기사와의 관계성에 대해 파악할 수 있으며, 사회/경제적 동향을 반영한 부동산 가격 변동을 예측할 수 있을 것으로 보인다.

생성 AI기반 뉴스 감성 분석과 부동산 가격 예측: LSTM과 VAR모델의 적용 (Sentiment Analysis of News Based on Generative AI and Real Estate Price Prediction: Application of LSTM and VAR Models)

  • 김수아;권미주;김현희
    • 정보처리학회 논문지
    • /
    • 제13권5호
    • /
    • pp.209-216
    • /
    • 2024
  • 부동산 시장은 다양한 요인에 의해 가격이 결정되며 거시경제 변수뿐 만 아니라 뉴스 기사, SNS 등 다양한 텍스트 데이터의 영향을 받는다. 특히 뉴스 기사는 국민들이 느끼는 경제 심리를 반영하고 있으므로 부동산 매매 가격 예측에 있어 중요한 요인이다. 본 연구에서는 뉴스 기사를 감성 분석하여 그 결과를 뉴스 감성 지수로 점수화 한 후 부동산 가격 예측 모델에 적용하였다. 먼저 기사 본문을 요약 후 요약된 내용을 바탕으로 생성 AI를 활용하여 긍정, 부정, 중립으로 분류한 다음 총 점수를 산출하였고 이를 부동산 가격 예측 모델에 적용하였다. 부동산 가격 예측 모델로는 Multi-head attention LSTM 모델과 Vector Auto Regression 모델을 사용하였다. 제안하는 뉴스 감성 지수를 적용하지 않은 LSTM 예측 모델은 1개월, 2개월, 3개월 예측에서 각각 0.60, 0.872, 1.117의 Root Mean Square Error (RMSE)을 보였으며, 뉴스 감성 지수를 적용한 LSTM 예측 모델은 각각 0.40, 0.724, 1.03의 RMSE값을 나타낸다. 또한 뉴스 감성 지수를 적용하지 않은 Vector Auto Regression 예측 모델은 1개월, 2개월, 3개월 예측에서 각각 1.6484, 0.6254, 0.9220, 뉴스 감성 지수를 적용한 Vector Auto Regression 예측 모델은 각각 1.1315, 0.3413, 1.6227의 RMSE 값을 나타낸다. 앞선 아파트 매매가격지수 예측 모델을 통해 사회/경제적 동향을 반영한 부동산 시장 가격 변동을 예측할 수 있을 것으로 보인다.

주택가격 예측을 위한 주요 특성 분석 (Analysis of Important Features for Predicting House Prices)

  • 김준완;백승준;백주련
    • 한국컴퓨터정보학회:학술대회논문집
    • /
    • 한국컴퓨터정보학회 2023년도 제67차 동계학술대회논문집 31권1호
    • /
    • pp.27-29
    • /
    • 2023
  • 불안정한 부동산 가격은 지속적인 사회 문제로 거론되고 있는데 이는 부동산 매매 가격을 예측할 수 있는 정확한 지표가 체계적이고 구체적으로 확립되지 않았기 때문이다. 본 논문은 가격변동에 주요하게 영향을 미치는 특성을 파악하여 가격 예측 지표로 활용하기 위해 머신러닝 모델을 적용하여 특성 분석을 수행한다. 이를 위해 한국부동산원에서 제공하는 2021년 10월부터 2022년 9월까지 1년간의 역 주변 500M 이내 거래 데이터 약 30만 6천 개를 어떠한 과정으로 전처리하여 머신러닝 모델에 적용하였는지 기술한다.

  • PDF

Autoencoder 기법을 활용한 부동산 가격 이상치 분석 (Analsis Of Outliers In Real Estate Prices Using Autoencoder)

  • 김윤서;박종찬;오하영
    • 한국정보통신학회논문지
    • /
    • 제25권12호
    • /
    • pp.1739-1748
    • /
    • 2021
  • 부동산 가격은 국가, 기업, 가계에 영향을 미치며 최근 급등하는 부동산 가격에 부동산 버블에 관한 연구가 많이 시행되고 있다. 하지만 부동산 버블 예측에서 단순히 부동산 가격만을 비교하거나, 부동산 매매에서 핵심적인 심리적 변수를 반영하지 못한다면 버블 예측 모형의 정확성이 떨어진다 판단할 수 있다. 본 연구는 오토인코더 기법을 사용하여 지역별 부동산 버블 상황을 설명할 수 있는 예측 모형을 설계하는 것이 목적이다. 기존의 부동산 버블 분석 연구들이 가격에 영향을 미치는 다양한 종류의 변수를 설정하지 못하였고 주로 선형 모형을 기반으로 연구를 진행했다는 부분에서, 본 연구는 기존 부동산 버블 연구에 사용되지 않았던 기법과 변수들의 도입 가능성을 시사한다.

부동산 전세사기 예방을 위한 요인 분석 및 회귀 분석 기반 전세보증사고 금액 예측 모델 (A Factor Analysis and Regression-Based Prediction Model of Security Deposit Scam Amount for Preventing Rental Scam)

  • 하서정;오세현;반소정;이지윤;김현희
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2024년도 춘계학술발표대회
    • /
    • pp.554-555
    • /
    • 2024
  • 전세 사기로 인한 피해가 해마다 증가하고 있다. 본 연구에서는 부동산 가격과 대출 데이터를 통해 전세 사기의 원인을 분석하고, 이에 대한 대처방안을 제시하였다. 데이터 분석 결과, 주택 가격의 상승과 부동산 정책의 변화가 전세사기에 주요한 영향을 미친다는 것과, 전세사기 사건 수와 부동산 가격 상승 사이에 높은 상관관계가 나타남을 확인했다. 또한, 회귀분석을 사용하여 연도에 따른 전세보증사고 금액 예측 모델을 구축하였다. 이를 토대로 부동산 시장 안정화와 함께 개인 및 정부 차원의 협력이 강화된다면 전세사기 피해를 줄일 수 있을 것이라 기대된다.

부동산시장의 자금흐름에 관한 실증적 연구

  • 김종권
    • 대한안전경영과학회:학술대회논문집
    • /
    • 대한안전경영과학회 2008년도 추계학술대회
    • /
    • pp.441-455
    • /
    • 2008
  • 본 논문은 단기 및 장기간에 걸쳐 부동산시장의 동태적 자금흐름과 수익률 분석에 초점을 맞추고 있다. 본 논문에서는 부동산시장의 실증적 동태적 자금흐름과 수익률 분석은 VAR모형을 사용하였으며 다양한 금융 및 경제관련 변수들을 연구에 포함시키고 있다. 실증적 분석 결과에 따르면 우리나라에서도 기존의 미국 연구 사례에서와 같이 금융시장의 자금흐름을 통하여 부동산시장의 동태적 자금흐름을 예측할 수 없다는 점을 파악할 수 있다. 또한 Granger 인과성 검정 결과에 따르면 통화정책 및 증권시장 변수 모두 전국아파트 매매가격, 전국 단독주택 매매가격, 전국 전세아파트 매매가격 실질상승률 등의 부동산관련 변수에 통계적으로 유의한 영향이 크지 않음을 알 수 있다. 그러나 분산분해 결과에 따르면 전국아파트 및 전국전세아파트 매매가격 실질상승률에 대한 움직임에 코스피수익률의 영향력이 증대될 수 있음을 알 수 있다.

  • PDF

공간회귀모형을 이용한 토지시세가격 추정 (Spatial analysis for a real transaction price of land)

  • 최지혜;진향곤;김용구
    • 응용통계연구
    • /
    • 제31권2호
    • /
    • pp.217-228
    • /
    • 2018
  • 부동산 투기근절, 공평과세 목적으로 부동산 실거래 신고제도가 도입된 이후, 정부에서 운영 중인 부동산거래관리시스템에는 연간 약 200만 건의 부동산 실거래 신고자료가 축적되고 있다. 인터넷이 발달하고 정보에 대한 접근성이 높아진 요즘, 부동산 투자에 대한 관심 증가로 부동산 가격정보에 대한 요구도 나날이 증가하고 있다. 하지만 이는 단순히 거래사례에 대한 정보만을 제공할 뿐이라 공동주택 실거래의 경우 동, 호수, 토지건물 실거래의 경우 지번을 개인정보보호 등의 이유로 공개하고 있지 않아 실거래의 위치별 정확한 데이터를 구득하기 어려운 실정이어서 정보의 비대칭성이 여전히 존재하고 이러한 부동산 정보의 특수성이 부동산시장에서의 투기가 근절되지 않는 이유 중 하나이다. 본 논문에서는 축적된 실거래 신고가격 데이터를 활용하여 실거래 미발생 지점에 대한 시세가격 추정 모형을 도출하는 것으로, 부동산 가격이 지리적 위치에 따라 결정되는 특수성을 가지는 것을 고려하여 공간구조가 반영될 수 있도록 공간회귀 모형을 통한 추정 토지 시세가격의 정확도를 살펴보았다.

머신러닝 기법을 통한 대한민국 부동산 가격 변동 예측 (Real-Estate Price Prediction in South Korea via Machine Learning Modeling)

  • 남상현;한태호;김이주;이은지
    • 한국인터넷방송통신학회논문지
    • /
    • 제20권6호
    • /
    • pp.15-20
    • /
    • 2020
  • 최근 부동산 시장에 대한 관심이 높다. 과거 주거환경으로만 여겨지던 부동산은 끊임없는 수요 증가로 안정적인 투자 대상으로 인식되고 있기 때문이다. 특히 국내 시장의 경우 인구 수의 감소에도 불구하고 1인 가구의 증가 및 대도시로의 인구 유입이 가속화되며 수도권 중심으로 부동산 가격이 급격히 상승하고 현상이 나타나고 있다. 이에 미래 부동산 시장의 전망을 정확히 예측하는 것은 개인의 자산 관리 뿐 아니라 정부 정책 수립 등 사회 전반에 걸쳐 매우 중요한 사안이라고 할 수 있다. 본 논문에서는 머신러닝 기법을 활용해 과거 부동산 매매 데이터를 학습해 미래 부동산 시세를 예측하는 프로그램을 개발하였다. 한국감정원과 국토교통부에서 제공하는 대한민국 부동산 매매 시세 데이터를 활용하였으며 지역별로 2022년도 평균 매매가 예측치를 제시한다. 개발된 프로그램은 오픈소스 형태로 공개하여 다양한 형태로 활용될 수 있도록 하였다.