본 연구의 목적은 딥 러닝 방법을 부동산가격지수 예측에 적용해보고, 기존의 시계열분석 방법과의 비교를 통해 부동산 시장 예측의 새로운 방법으로서 활용가능성을 확인하는 것이다. 딥 러닝(deep learning)방법인 DNN(Deep Neural Networks)모형 및 LSTM(Long Shot Term Memory networks)모형과 시계열분석 방법인 ARIMA(autoregressive integrated moving average)모형을 이용하여 여러 가지 부동산가격지수에 대한 예측을 시도하였다. 연구결과 첫째, 딥 러닝 방법의 예측력이 시계열분석 방법보다 우수한 것으로 나타났다. 둘째, 딥 러닝 방법 중에서는 DNN모형의 예측력이 LSTM모형의 예측력보다 우수하나 그 정도는 미미한 수준인 것으로 나타났다. 셋째, 딥 러닝 방법과 ARIMA모형은 부동산 가격지수(real estate price index) 중 아파트 실거래가격지수(housing sales price index)에 대한 예측력이 가장 부족한 것으로 나타났다. 향후 딥 러닝 방법을 활용함으로써 부동산 시장에 대한 예측의 정확성을 제고할 수 있을 것으로 기대된다.
우리나라 뉴스에서 매일 빠지지 않는 내용은 아마도 부동산 경제에 관한 것이라고 생각된다. 많은 사람들은 부동산 가격의 변동에 관한 전문가들의 예측에 관심을 갖고 있다. 매매가격 혹은 전세가격을 예측하기위해 일반적으로 많이 사용되는 방법은 박스-젠킨스에 기반을 둔 자기회귀이동평균모형이다. 본 논문에서는 자기회귀모형과 다변량 자료분석에서 사용하는 독립성분분석을 결합하여 예측하는 방법을 시도하여 보았다. 매매가격과 전세가격을 두 개의 독립성분으로 재설정하고 독립성분들을 이용하여 예측한 후 역변환을 통해 매매가격과 전세가격을 예측하는 방법을 시도하였다. 그 결과 일반적인 자기회귀이동평균모형을 사용할 때 보다 독립성분을 활용한 예측이 실제 지수에 더 유사한 값들을 얻을 수 있음을 보였다.
부동산 시장은 다양한 요인에 의해 가격이 결정되며 거시경제 변수뿐 만 아니라 뉴스 기사, SNS 등 다양한 비정형 데이터의 영향을 받는다. 특히 뉴스 기사는 국민들이 느끼는 경제 심리를 반영하고 있어 부동산 가격에 영향을 크게 미치는 변수라고 판단된다. 본 연구에서는 뉴스 기사의 세분화된 감정 분석을 통해 전통적인 분석 방법보다 더 의미 있는 결과를 얻을 수 있는 부동산 가격 예측 모델을 생성하였으며 뉴스 기사로부터 심리 지수를 산출하기 위해 생성 AI 를 활용하였다. 제안하는 매매가격지수 예측 모델을 통해 부동산 시장과 뉴스 기사와의 관계성에 대해 파악할 수 있으며, 사회/경제적 동향을 반영한 부동산 가격 변동을 예측할 수 있을 것으로 보인다.
부동산 시장은 다양한 요인에 의해 가격이 결정되며 거시경제 변수뿐 만 아니라 뉴스 기사, SNS 등 다양한 텍스트 데이터의 영향을 받는다. 특히 뉴스 기사는 국민들이 느끼는 경제 심리를 반영하고 있으므로 부동산 매매 가격 예측에 있어 중요한 요인이다. 본 연구에서는 뉴스 기사를 감성 분석하여 그 결과를 뉴스 감성 지수로 점수화 한 후 부동산 가격 예측 모델에 적용하였다. 먼저 기사 본문을 요약 후 요약된 내용을 바탕으로 생성 AI를 활용하여 긍정, 부정, 중립으로 분류한 다음 총 점수를 산출하였고 이를 부동산 가격 예측 모델에 적용하였다. 부동산 가격 예측 모델로는 Multi-head attention LSTM 모델과 Vector Auto Regression 모델을 사용하였다. 제안하는 뉴스 감성 지수를 적용하지 않은 LSTM 예측 모델은 1개월, 2개월, 3개월 예측에서 각각 0.60, 0.872, 1.117의 Root Mean Square Error (RMSE)을 보였으며, 뉴스 감성 지수를 적용한 LSTM 예측 모델은 각각 0.40, 0.724, 1.03의 RMSE값을 나타낸다. 또한 뉴스 감성 지수를 적용하지 않은 Vector Auto Regression 예측 모델은 1개월, 2개월, 3개월 예측에서 각각 1.6484, 0.6254, 0.9220, 뉴스 감성 지수를 적용한 Vector Auto Regression 예측 모델은 각각 1.1315, 0.3413, 1.6227의 RMSE 값을 나타낸다. 앞선 아파트 매매가격지수 예측 모델을 통해 사회/경제적 동향을 반영한 부동산 시장 가격 변동을 예측할 수 있을 것으로 보인다.
불안정한 부동산 가격은 지속적인 사회 문제로 거론되고 있는데 이는 부동산 매매 가격을 예측할 수 있는 정확한 지표가 체계적이고 구체적으로 확립되지 않았기 때문이다. 본 논문은 가격변동에 주요하게 영향을 미치는 특성을 파악하여 가격 예측 지표로 활용하기 위해 머신러닝 모델을 적용하여 특성 분석을 수행한다. 이를 위해 한국부동산원에서 제공하는 2021년 10월부터 2022년 9월까지 1년간의 역 주변 500M 이내 거래 데이터 약 30만 6천 개를 어떠한 과정으로 전처리하여 머신러닝 모델에 적용하였는지 기술한다.
부동산 가격은 국가, 기업, 가계에 영향을 미치며 최근 급등하는 부동산 가격에 부동산 버블에 관한 연구가 많이 시행되고 있다. 하지만 부동산 버블 예측에서 단순히 부동산 가격만을 비교하거나, 부동산 매매에서 핵심적인 심리적 변수를 반영하지 못한다면 버블 예측 모형의 정확성이 떨어진다 판단할 수 있다. 본 연구는 오토인코더 기법을 사용하여 지역별 부동산 버블 상황을 설명할 수 있는 예측 모형을 설계하는 것이 목적이다. 기존의 부동산 버블 분석 연구들이 가격에 영향을 미치는 다양한 종류의 변수를 설정하지 못하였고 주로 선형 모형을 기반으로 연구를 진행했다는 부분에서, 본 연구는 기존 부동산 버블 연구에 사용되지 않았던 기법과 변수들의 도입 가능성을 시사한다.
전세 사기로 인한 피해가 해마다 증가하고 있다. 본 연구에서는 부동산 가격과 대출 데이터를 통해 전세 사기의 원인을 분석하고, 이에 대한 대처방안을 제시하였다. 데이터 분석 결과, 주택 가격의 상승과 부동산 정책의 변화가 전세사기에 주요한 영향을 미친다는 것과, 전세사기 사건 수와 부동산 가격 상승 사이에 높은 상관관계가 나타남을 확인했다. 또한, 회귀분석을 사용하여 연도에 따른 전세보증사고 금액 예측 모델을 구축하였다. 이를 토대로 부동산 시장 안정화와 함께 개인 및 정부 차원의 협력이 강화된다면 전세사기 피해를 줄일 수 있을 것이라 기대된다.
본 논문은 단기 및 장기간에 걸쳐 부동산시장의 동태적 자금흐름과 수익률 분석에 초점을 맞추고 있다. 본 논문에서는 부동산시장의 실증적 동태적 자금흐름과 수익률 분석은 VAR모형을 사용하였으며 다양한 금융 및 경제관련 변수들을 연구에 포함시키고 있다. 실증적 분석 결과에 따르면 우리나라에서도 기존의 미국 연구 사례에서와 같이 금융시장의 자금흐름을 통하여 부동산시장의 동태적 자금흐름을 예측할 수 없다는 점을 파악할 수 있다. 또한 Granger 인과성 검정 결과에 따르면 통화정책 및 증권시장 변수 모두 전국아파트 매매가격, 전국 단독주택 매매가격, 전국 전세아파트 매매가격 실질상승률 등의 부동산관련 변수에 통계적으로 유의한 영향이 크지 않음을 알 수 있다. 그러나 분산분해 결과에 따르면 전국아파트 및 전국전세아파트 매매가격 실질상승률에 대한 움직임에 코스피수익률의 영향력이 증대될 수 있음을 알 수 있다.
부동산 투기근절, 공평과세 목적으로 부동산 실거래 신고제도가 도입된 이후, 정부에서 운영 중인 부동산거래관리시스템에는 연간 약 200만 건의 부동산 실거래 신고자료가 축적되고 있다. 인터넷이 발달하고 정보에 대한 접근성이 높아진 요즘, 부동산 투자에 대한 관심 증가로 부동산 가격정보에 대한 요구도 나날이 증가하고 있다. 하지만 이는 단순히 거래사례에 대한 정보만을 제공할 뿐이라 공동주택 실거래의 경우 동, 호수, 토지건물 실거래의 경우 지번을 개인정보보호 등의 이유로 공개하고 있지 않아 실거래의 위치별 정확한 데이터를 구득하기 어려운 실정이어서 정보의 비대칭성이 여전히 존재하고 이러한 부동산 정보의 특수성이 부동산시장에서의 투기가 근절되지 않는 이유 중 하나이다. 본 논문에서는 축적된 실거래 신고가격 데이터를 활용하여 실거래 미발생 지점에 대한 시세가격 추정 모형을 도출하는 것으로, 부동산 가격이 지리적 위치에 따라 결정되는 특수성을 가지는 것을 고려하여 공간구조가 반영될 수 있도록 공간회귀 모형을 통한 추정 토지 시세가격의 정확도를 살펴보았다.
최근 부동산 시장에 대한 관심이 높다. 과거 주거환경으로만 여겨지던 부동산은 끊임없는 수요 증가로 안정적인 투자 대상으로 인식되고 있기 때문이다. 특히 국내 시장의 경우 인구 수의 감소에도 불구하고 1인 가구의 증가 및 대도시로의 인구 유입이 가속화되며 수도권 중심으로 부동산 가격이 급격히 상승하고 현상이 나타나고 있다. 이에 미래 부동산 시장의 전망을 정확히 예측하는 것은 개인의 자산 관리 뿐 아니라 정부 정책 수립 등 사회 전반에 걸쳐 매우 중요한 사안이라고 할 수 있다. 본 논문에서는 머신러닝 기법을 활용해 과거 부동산 매매 데이터를 학습해 미래 부동산 시세를 예측하는 프로그램을 개발하였다. 한국감정원과 국토교통부에서 제공하는 대한민국 부동산 매매 시세 데이터를 활용하였으며 지역별로 2022년도 평균 매매가 예측치를 제시한다. 개발된 프로그램은 오픈소스 형태로 공개하여 다양한 형태로 활용될 수 있도록 하였다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.