• Title/Summary/Keyword: 부동산가격지수

Search Result 49, Processing Time 0.021 seconds

Predicting the Real Estate Price Index Using Deep Learning (딥 러닝을 이용한 부동산가격지수 예측)

  • Bae, Seong Wan;Yu, Jung Suk
    • Korea Real Estate Review
    • /
    • v.27 no.3
    • /
    • pp.71-86
    • /
    • 2017
  • The purpose of this study was to apply the deep running method to real estate price index predicting and to compare it with the time series analysis method to test the possibility of its application to real estate market forecasting. Various real estate price indices were predicted using the DNN (deep neural networks) and LSTM (long short term memory networks) models, both of which draw on the deep learning method, and the ARIMA (autoregressive integrated moving average) model, which is based on the time seies analysis method. The results of the study showed the following. First, the predictive power of the deep learning method is superior to that of the time series analysis method. Second, among the deep learning models, the predictability of the DNN model is slightly superior to that of the LSTM model. Third, the deep learning method and the ARIMA model are the least reliable tools for predicting the housing sales prices index among the real estate price indices. Drawing on the deep learning method, it is hoped that this study will help enhance the accuracy in predicting the real estate market dynamics.

부동산시장(不動産市場)의 불완전성(不完全性)과 자본자산가격결정모형(資本資産價格決定模型)

  • Kim, Ji-Su
    • The Korean Journal of Financial Management
    • /
    • v.8 no.2
    • /
    • pp.1-29
    • /
    • 1991
  • 본 논문에서는 우리나라의 부동산시장(不動産市場)의 불완전성(不完全性)이 금융시장보다도 강한 현실을 반영하여 그것이 자본자산가격결정모형(資本資産價格決定模型) (the capital asset pricing model)에 미치는 영향을 분석하였다. 부동산시장의 불완전성으로서는 특히 부동산의 경우 기본적인 최저거래단위가 일반 금융자산보다도 높아 거래에 제약이 따른다는 점, 또한 최근 정부의 부동산 가격의 안정화 시책에 따라 개인의 부동산 보유한도가 엄격하게 제한되고 있으며 부동산 투자 이득에 대한 과세도 대폭 강화되고 있다는 점 등이 고려되었다. 이와같은 가정하에서 본고에서는 전통적인 자본자산가격모형을 수정 검토한 뒤, 그 모형의 틀속에서 부동산보유제한(不動産保有制限) 및 투자이득(投資利得)의 과세강화(課稅强化)같은 부동산가격 안정화 시책의 효과를 살펴보고, 그 외 자산담보대출의 담보비율 조정이 자산의 가격형성에 미치게되는 효과와 부동산 투자신탁제도의 도입효과, 부동산 기대수익률과 주식의 기대수익률의 관계 등을 검토하였다. 이러한 분석의 결과, 특히 본고에서는 현재 정부가 추진중인 불동산보유제한(不動産保有制限) 및 투자이득(投資利得)의 과세강화(課稅强化)와 같은 정책들이 경우에 따라서 부동산 가격을 안정화시키기 보다는 오히려 부동산 가격의 상승을 유발할 수도 있는 것으로 나타나 정책의 시행시 상당히 신중을 기하지 않으면 안되는 것으로 분석되었다.

  • PDF

Predictive Model for Real Estate Prices Using Sentiment Index of news articles based on Generative AI (생성 AI 기반 뉴스 기사 심리지수를 활용한 부동산 가격 예측 모델)

  • Kim Sua;Kwon Miju;Cho Soobin;Kim Eunsoo;Hyon Hee Kim
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2023.11a
    • /
    • pp.1198-1199
    • /
    • 2023
  • 부동산 시장은 다양한 요인에 의해 가격이 결정되며 거시경제 변수뿐 만 아니라 뉴스 기사, SNS 등 다양한 비정형 데이터의 영향을 받는다. 특히 뉴스 기사는 국민들이 느끼는 경제 심리를 반영하고 있어 부동산 가격에 영향을 크게 미치는 변수라고 판단된다. 본 연구에서는 뉴스 기사의 세분화된 감정 분석을 통해 전통적인 분석 방법보다 더 의미 있는 결과를 얻을 수 있는 부동산 가격 예측 모델을 생성하였으며 뉴스 기사로부터 심리 지수를 산출하기 위해 생성 AI 를 활용하였다. 제안하는 매매가격지수 예측 모델을 통해 부동산 시장과 뉴스 기사와의 관계성에 대해 파악할 수 있으며, 사회/경제적 동향을 반영한 부동산 가격 변동을 예측할 수 있을 것으로 보인다.

Forecasting Korean housing price index: application of the independent component analysis (부동산 매매지수와 전세지수 예측: 독립성분분석을 활용한 분석)

  • Pak, Ro Jin
    • The Korean Journal of Applied Statistics
    • /
    • v.30 no.2
    • /
    • pp.271-280
    • /
    • 2017
  • Real-estate values and related economics are often the first read newspaper category. We are concerned about the opinions of experts on the forecast for real estate prices. The Box-Jenkins ARIMA model is a commonly used statistical method to predict housing prices. In this article, we tried to predict housing prices by combining independent component analysis (ICA) in multivariate data analysis and the Box-Jenkins ARIMA model. The two independent components for both the selling price index and the long-term rental price index were extracted and used to predict the future values of both indices. In conclusion, it has been shown that the actual indices and the forecast indices using ICA are more comparable to the forecasts of the ARIMA model alone.

Sentiment Analysis of News Based on Generative AI and Real Estate Price Prediction: Application of LSTM and VAR Models (생성 AI기반 뉴스 감성 분석과 부동산 가격 예측: LSTM과 VAR모델의 적용)

  • Sua Kim;Mi Ju Kwon;Hyon Hee Kim
    • The Transactions of the Korea Information Processing Society
    • /
    • v.13 no.5
    • /
    • pp.209-216
    • /
    • 2024
  • Real estate market prices are determined by various factors, including macroeconomic variables, as well as the influence of a variety of unstructured text data such as news articles and social media. News articles are a crucial factor in predicting real estate transaction prices as they reflect the economic sentiment of the public. This study utilizes sentiment analysis on news articles to generate a News Sentiment Index score, which is then seamlessly integrated into a real estate price prediction model. To calculate the sentiment index, the content of the articles is first summarized. Then, using AI, the summaries are categorized into positive, negative, and neutral sentiments, and a total score is calculated. This score is then applied to the real estate price prediction model. The models used for real estate price prediction include the Multi-head attention LSTM model and the Vector Auto Regression model. The LSTM prediction model, without applying the News Sentiment Index (NSI), showed Root Mean Square Error (RMSE) values of 0.60, 0.872, and 1.117 for the 1-month, 2-month, and 3-month forecasts, respectively. With the NSI applied, the RMSE values were reduced to 0.40, 0.724, and 1.03 for the same forecast periods. Similarly, the VAR prediction model without the NSI showed RMSE values of 1.6484, 0.6254, and 0.9220 for the 1-month, 2-month, and 3-month forecasts, respectively, while applying the NSI led to RMSE values of 1.1315, 0.3413, and 1.6227 for these periods. These results demonstrate the effectiveness of the proposed model in predicting apartment transaction price index and its ability to forecast real estate market price fluctuations that reflect socio-economic trends.

A Study about the Real Estate' Policy Impact on house prices (Focusing on the time series analysis and regression) (부동산정책이 주택가격에 미치는 영향에 관한 연구 (시계열분석과 회귀분석 중심으로))

  • Ko, Pill-Song;Park, Chang-Soo
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.5 no.2
    • /
    • pp.205-213
    • /
    • 2010
  • This study was to analyze the past regime's real estate policy and the time-series data on real estate price index from 1986 to 2009 in 24 years. Also, the real estate index and macroeconomic variables, the impact on house price index variable conducted to regression analysis and to analyze whether and how much is affected. Analyzed as follows: First, Korea's real estate policy was the post-policy and the past regime's real estate policy was inconsistent with each other. Second, in the normal phase whenever real estate issues, the measures of the strengthening regulation and of the economic recovery were only to repeat periodically. Third, the timing and means of policy enforcement was an inappropriate and Real estate market was getting worse at the time whenever a real estate policies performed. Fourth, The apartments prices index of the housing types rose the highest and were the most popular for 24 years. Increase or decrease the amount of the price index for apartments, Roh Tae-woo(65.0%) - Kim Dae-jung (42.5%) - Roh Moo-hyun (32.8%) were in order. Fifth, the results of the regression analysis carried out: The impact on housing prices among independent variables were followed by Cap Construction- one per capita income - Housing consumer price index - Accompanying Composite Index - Trailing Composite Index - Home subscription Subscriber account - Leading Composite Index.

Correlation Analysis between Consumer Sentiment Index and Real Estate Consumer Sentiment Index (소비자 심리지수와 부동산시장 소비심리지수의 상관관계 분석)

  • Seon Ho Choi;Jin Hui Jeong;Hyon Hee Kim
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2024.05a
    • /
    • pp.563-564
    • /
    • 2024
  • 부동산시장은 경제의 중심 요소 중 하나로, 거래량과 가격 변동 등이 직접적인 영향을 미친다. 특히, 부동산시장은 경제 지표 외에도 정책이나 심리에 따라 변동하는 경향이 있어 심리적 요인의 변화와 분석에 대한 요구가 지속된다. 본 연구는 소비자 심리지수(CCSI)와 부동산시장 소비심리지수(REI) 간 상관관계를 분석하여 부동산시장의 건정성 유지 및 효율성 향상에 기여하고자 한다. 본 연구에서는 선형 회귀분석 및 상관분석을 통해 소비자 심리지수와 부동산시장 소비심리지수 간 연관성 연구를 진행했다. 경제적 상황 및 소비자 심리 변화가 부동산시장 소비심리지수에 영향을 미친다는 것을 보여주며, 이는 부동산시장의 예측과 전략 수립에 중요한 역할을 할 것으로 기대된다.

A Study on the Index Estimation of Missing Real Estate Transaction Cases Using Machine Learning (머신러닝을 활용한 결측 부동산 매매 지수의 추정에 대한 연구)

  • Kim, Kyung-Min;Kim, Kyuseok;Nam, Daisik
    • Journal of the Economic Geographical Society of Korea
    • /
    • v.25 no.1
    • /
    • pp.171-181
    • /
    • 2022
  • The real estate price index plays key roles as quantitative data in real estate market analysis. International organizations including OECD publish the real estate price indexes by country, and the Korea Real Estate Board announces metropolitan-level and municipal-level indexes. However, when the index is set on the smaller spatial unit level than metropolitan and municipal-level, problems occur: missing values. As the spatial scope is narrowed down, there are cases where there are few or no transactions depending on the unit period, which lead index calculation difficult or even impossible. This study suggests a supervised learning-based machine learning model to compensate for missing values that may occur due to no transaction in a specific range and period. The models proposed in our research verify the accuracy of predicting the existing values and missing values.

Study on the factors that affect the fluctuations in the price of real estate for a digital economy (디지털 경제에 부동산 가격의 변동에 영향을 주는 요인에 관한 연구)

  • Choi, Jeong-Il;Lee, Ok-Dong
    • Journal of Digital Convergence
    • /
    • v.11 no.11
    • /
    • pp.59-70
    • /
    • 2013
  • As people invest most of their asset in real estate, there is high interest in changing in housing and real estate prices in the future for a digital economy. Various variables are affecting the housing and real estate market. Among them, four variables : households, productive population, interest rate and index price are chosen and analyzed representatively. This study is aimed to build decision model of apartment prices in Seoul empirically. From the analysis result the stock index is the only variable which is significant statistically to apartments in Seoul. From this study, the households and productive population show the same direction as shown in the previous studies before but not significant statistically. Among the independent variables, the stock index is chosen as a major variable of determinant of Seoul apartment price. From the result of the research, prediction of stock market should be preceded to forecast the movement of housing and real estate market in the future.

기업(企業)의 부동산(不動産) 보유(保有)와 기업가치(企業價値에) 관한 연구(硏究)

  • Kim, Ji-Su;Jeong, Gi-Ung
    • The Korean Journal of Financial Management
    • /
    • v.10 no.2
    • /
    • pp.53-81
    • /
    • 1993
  • 본고에서는 부동산 가격의 상승과 기업가치의 관제를 이론적으로 규명하고 그에 관한 실증분석의 결과를 제시한다. 우선 이론적인 분석에서는 거품가격의 형성에 의하여 야기되는 부동산 가격상승 기대는 기업의 미래 성장기회에 대한 가치손실을 야기하므로 부동산 가격상승 기대에 따른 기업가치의 변화는 기업의 보유 부동산 가치의 상승에 미치지 못할 것으로 분석하였다. 또한 이러한 성장기회의 가치 상실은 부채에 의한 자금조달이 높을수록 더욱 커질 것으로 분석되었다. 이에 대한 실증분석의 결과, 우선 87-91년의 연도별 횡단면 분석에서는 기업의 부동산 보유 비율이 주식수익률에 큰 영향을 미치지 않는 것으로 나타났다. 그러나 부채비율의 과다에 따라 표본을 분류하여 분석을 하였을 때에는 고부채 기업일수록 부동산 보유 변수에 대한 회귀제수가 전반적으로 낮게 나타나 부채사용이 높을수록 성장기회 가치상실이 클 것이라는 이론적인 가설을 지지하였다. 이러한 결과는 기업의 규모별 분석에서는 관찰되지 않았다. 따라서 주식수익률의 부동산 보유 효과는 규모별 효과에 비하여 부채비율별 효과가 좀 더 뚜렷한 효과로 간주되었다.

  • PDF