The purpose of this study was to apply the deep running method to real estate price index predicting and to compare it with the time series analysis method to test the possibility of its application to real estate market forecasting. Various real estate price indices were predicted using the DNN (deep neural networks) and LSTM (long short term memory networks) models, both of which draw on the deep learning method, and the ARIMA (autoregressive integrated moving average) model, which is based on the time seies analysis method. The results of the study showed the following. First, the predictive power of the deep learning method is superior to that of the time series analysis method. Second, among the deep learning models, the predictability of the DNN model is slightly superior to that of the LSTM model. Third, the deep learning method and the ARIMA model are the least reliable tools for predicting the housing sales prices index among the real estate price indices. Drawing on the deep learning method, it is hoped that this study will help enhance the accuracy in predicting the real estate market dynamics.
본 논문에서는 우리나라의 부동산시장(不動産市場)의 불완전성(不完全性)이 금융시장보다도 강한 현실을 반영하여 그것이 자본자산가격결정모형(資本資産價格決定模型) (the capital asset pricing model)에 미치는 영향을 분석하였다. 부동산시장의 불완전성으로서는 특히 부동산의 경우 기본적인 최저거래단위가 일반 금융자산보다도 높아 거래에 제약이 따른다는 점, 또한 최근 정부의 부동산 가격의 안정화 시책에 따라 개인의 부동산 보유한도가 엄격하게 제한되고 있으며 부동산 투자 이득에 대한 과세도 대폭 강화되고 있다는 점 등이 고려되었다. 이와같은 가정하에서 본고에서는 전통적인 자본자산가격모형을 수정 검토한 뒤, 그 모형의 틀속에서 부동산보유제한(不動産保有制限) 및 투자이득(投資利得)의 과세강화(課稅强化)같은 부동산가격 안정화 시책의 효과를 살펴보고, 그 외 자산담보대출의 담보비율 조정이 자산의 가격형성에 미치게되는 효과와 부동산 투자신탁제도의 도입효과, 부동산 기대수익률과 주식의 기대수익률의 관계 등을 검토하였다. 이러한 분석의 결과, 특히 본고에서는 현재 정부가 추진중인 불동산보유제한(不動産保有制限) 및 투자이득(投資利得)의 과세강화(課稅强化)와 같은 정책들이 경우에 따라서 부동산 가격을 안정화시키기 보다는 오히려 부동산 가격의 상승을 유발할 수도 있는 것으로 나타나 정책의 시행시 상당히 신중을 기하지 않으면 안되는 것으로 분석되었다.
Kim Sua;Kwon Miju;Cho Soobin;Kim Eunsoo;Hyon Hee Kim
Proceedings of the Korea Information Processing Society Conference
/
2023.11a
/
pp.1198-1199
/
2023
부동산 시장은 다양한 요인에 의해 가격이 결정되며 거시경제 변수뿐 만 아니라 뉴스 기사, SNS 등 다양한 비정형 데이터의 영향을 받는다. 특히 뉴스 기사는 국민들이 느끼는 경제 심리를 반영하고 있어 부동산 가격에 영향을 크게 미치는 변수라고 판단된다. 본 연구에서는 뉴스 기사의 세분화된 감정 분석을 통해 전통적인 분석 방법보다 더 의미 있는 결과를 얻을 수 있는 부동산 가격 예측 모델을 생성하였으며 뉴스 기사로부터 심리 지수를 산출하기 위해 생성 AI 를 활용하였다. 제안하는 매매가격지수 예측 모델을 통해 부동산 시장과 뉴스 기사와의 관계성에 대해 파악할 수 있으며, 사회/경제적 동향을 반영한 부동산 가격 변동을 예측할 수 있을 것으로 보인다.
Real-estate values and related economics are often the first read newspaper category. We are concerned about the opinions of experts on the forecast for real estate prices. The Box-Jenkins ARIMA model is a commonly used statistical method to predict housing prices. In this article, we tried to predict housing prices by combining independent component analysis (ICA) in multivariate data analysis and the Box-Jenkins ARIMA model. The two independent components for both the selling price index and the long-term rental price index were extracted and used to predict the future values of both indices. In conclusion, it has been shown that the actual indices and the forecast indices using ICA are more comparable to the forecasts of the ARIMA model alone.
The Transactions of the Korea Information Processing Society
/
v.13
no.5
/
pp.209-216
/
2024
Real estate market prices are determined by various factors, including macroeconomic variables, as well as the influence of a variety of unstructured text data such as news articles and social media. News articles are a crucial factor in predicting real estate transaction prices as they reflect the economic sentiment of the public. This study utilizes sentiment analysis on news articles to generate a News Sentiment Index score, which is then seamlessly integrated into a real estate price prediction model. To calculate the sentiment index, the content of the articles is first summarized. Then, using AI, the summaries are categorized into positive, negative, and neutral sentiments, and a total score is calculated. This score is then applied to the real estate price prediction model. The models used for real estate price prediction include the Multi-head attention LSTM model and the Vector Auto Regression model. The LSTM prediction model, without applying the News Sentiment Index (NSI), showed Root Mean Square Error (RMSE) values of 0.60, 0.872, and 1.117 for the 1-month, 2-month, and 3-month forecasts, respectively. With the NSI applied, the RMSE values were reduced to 0.40, 0.724, and 1.03 for the same forecast periods. Similarly, the VAR prediction model without the NSI showed RMSE values of 1.6484, 0.6254, and 0.9220 for the 1-month, 2-month, and 3-month forecasts, respectively, while applying the NSI led to RMSE values of 1.1315, 0.3413, and 1.6227 for these periods. These results demonstrate the effectiveness of the proposed model in predicting apartment transaction price index and its ability to forecast real estate market price fluctuations that reflect socio-economic trends.
The Journal of the Korea institute of electronic communication sciences
/
v.5
no.2
/
pp.205-213
/
2010
This study was to analyze the past regime's real estate policy and the time-series data on real estate price index from 1986 to 2009 in 24 years. Also, the real estate index and macroeconomic variables, the impact on house price index variable conducted to regression analysis and to analyze whether and how much is affected. Analyzed as follows: First, Korea's real estate policy was the post-policy and the past regime's real estate policy was inconsistent with each other. Second, in the normal phase whenever real estate issues, the measures of the strengthening regulation and of the economic recovery were only to repeat periodically. Third, the timing and means of policy enforcement was an inappropriate and Real estate market was getting worse at the time whenever a real estate policies performed. Fourth, The apartments prices index of the housing types rose the highest and were the most popular for 24 years. Increase or decrease the amount of the price index for apartments, Roh Tae-woo(65.0%) - Kim Dae-jung (42.5%) - Roh Moo-hyun (32.8%) were in order. Fifth, the results of the regression analysis carried out: The impact on housing prices among independent variables were followed by Cap Construction- one per capita income - Housing consumer price index - Accompanying Composite Index - Trailing Composite Index - Home subscription Subscriber account - Leading Composite Index.
Proceedings of the Korea Information Processing Society Conference
/
2024.05a
/
pp.563-564
/
2024
부동산시장은 경제의 중심 요소 중 하나로, 거래량과 가격 변동 등이 직접적인 영향을 미친다. 특히, 부동산시장은 경제 지표 외에도 정책이나 심리에 따라 변동하는 경향이 있어 심리적 요인의 변화와 분석에 대한 요구가 지속된다. 본 연구는 소비자 심리지수(CCSI)와 부동산시장 소비심리지수(REI) 간 상관관계를 분석하여 부동산시장의 건정성 유지 및 효율성 향상에 기여하고자 한다. 본 연구에서는 선형 회귀분석 및 상관분석을 통해 소비자 심리지수와 부동산시장 소비심리지수 간 연관성 연구를 진행했다. 경제적 상황 및 소비자 심리 변화가 부동산시장 소비심리지수에 영향을 미친다는 것을 보여주며, 이는 부동산시장의 예측과 전략 수립에 중요한 역할을 할 것으로 기대된다.
Journal of the Economic Geographical Society of Korea
/
v.25
no.1
/
pp.171-181
/
2022
The real estate price index plays key roles as quantitative data in real estate market analysis. International organizations including OECD publish the real estate price indexes by country, and the Korea Real Estate Board announces metropolitan-level and municipal-level indexes. However, when the index is set on the smaller spatial unit level than metropolitan and municipal-level, problems occur: missing values. As the spatial scope is narrowed down, there are cases where there are few or no transactions depending on the unit period, which lead index calculation difficult or even impossible. This study suggests a supervised learning-based machine learning model to compensate for missing values that may occur due to no transaction in a specific range and period. The models proposed in our research verify the accuracy of predicting the existing values and missing values.
As people invest most of their asset in real estate, there is high interest in changing in housing and real estate prices in the future for a digital economy. Various variables are affecting the housing and real estate market. Among them, four variables : households, productive population, interest rate and index price are chosen and analyzed representatively. This study is aimed to build decision model of apartment prices in Seoul empirically. From the analysis result the stock index is the only variable which is significant statistically to apartments in Seoul. From this study, the households and productive population show the same direction as shown in the previous studies before but not significant statistically. Among the independent variables, the stock index is chosen as a major variable of determinant of Seoul apartment price. From the result of the research, prediction of stock market should be preceded to forecast the movement of housing and real estate market in the future.
본고에서는 부동산 가격의 상승과 기업가치의 관제를 이론적으로 규명하고 그에 관한 실증분석의 결과를 제시한다. 우선 이론적인 분석에서는 거품가격의 형성에 의하여 야기되는 부동산 가격상승 기대는 기업의 미래 성장기회에 대한 가치손실을 야기하므로 부동산 가격상승 기대에 따른 기업가치의 변화는 기업의 보유 부동산 가치의 상승에 미치지 못할 것으로 분석하였다. 또한 이러한 성장기회의 가치 상실은 부채에 의한 자금조달이 높을수록 더욱 커질 것으로 분석되었다. 이에 대한 실증분석의 결과, 우선 87-91년의 연도별 횡단면 분석에서는 기업의 부동산 보유 비율이 주식수익률에 큰 영향을 미치지 않는 것으로 나타났다. 그러나 부채비율의 과다에 따라 표본을 분류하여 분석을 하였을 때에는 고부채 기업일수록 부동산 보유 변수에 대한 회귀제수가 전반적으로 낮게 나타나 부채사용이 높을수록 성장기회 가치상실이 클 것이라는 이론적인 가설을 지지하였다. 이러한 결과는 기업의 규모별 분석에서는 관찰되지 않았다. 따라서 주식수익률의 부동산 보유 효과는 규모별 효과에 비하여 부채비율별 효과가 좀 더 뚜렷한 효과로 간주되었다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.