• 제목/요약/키워드: 부극

검색결과 58건 처리시간 0.019초

유동상 화힉증착에 의한 리튬이차전지 전극용 탄소재료의 표면개질 (Surface Modification of Synthetic Graphite as an Electrode by Fluidized-bed Chemical Vapor Deposition for Lithium Secondary Batteries)

  • 류덕현;이중기;박달근;윤경석;조병원;설용건
    • 전기화학회지
    • /
    • 제3권3호
    • /
    • pp.173-177
    • /
    • 2000
  • 리튬 이차 전지의 성능은 부극으로 쓰이는 탄소재료의 표면의 미세 구조에 크게 의존한다. 본 연구에서는 이러한 표면 구조의 개질을 위해 유동상 화학증착법을 도입하여 금속 및 금속 산화물을 탄소재료 표면에 코팅하여 그 성능을 전기 화학적으로 평가하였다. 주석산화물을 코팅한 탄소 전극은 원래의 탄소 전극에 비해 용량의 상승을 나타내었으나 사이클이 진행됨에 따라 주석산화물이 코팅된 전지의 용량은 심각한 부피 변화에 의해 저하되어 사이클 수명이 감소되었다. 그러나, 부피 변화를 완화시켜주는 비활성 매트릭스 역할을 하는 구리를 주석 산화물 위에 코팅함으로 인해 부피 변화에 의한 용량 저하를 감소시킬 수 있었다.

금속산화물 첨가방법에 의한 리튬이차전지 부극재료의 충방전 특성 개선 (Enhancement on the Charge-discharge Property of Carbon Anode by the Addition of Metal Oxides in Li-ion Secondary Batteries)

  • 김정식
    • 한국세라믹학회지
    • /
    • 제40권11호
    • /
    • pp.1085-1089
    • /
    • 2003
  • 본 연구에서는 리튬이차전지의 음극재료로서 사용되고 있는 Mesocarbon Microbeads (MCMB) 카본 분말에 제2상 첨가물로서 소량의 주석산화물 (SnO$_2$) 을 균일하게 분산 첨가시킴으로써 카본전극 표면을 개질시켰으며, 이에 따른 전극의 전기화학적 특성 변화에 관하여 고찰하였다. 주석산화물 첨가 방법는 전하적정법을 사용하여 Sn 을 MCMB 분말에 삽입시키고, 다시 삽입된 Sn이 산화되도록 대기 중에서 25$0^{\circ}C$로 l 시간동안 후열처리를 하였다. 주석산화물이 첨가된 MCMB 카본분말로 Li/MCMB 전지 cell을 만들어 충방전시험을 수행한 결과, raw MCMB로 만든 전극보다 더 우수한 충방전 용량과 싸이클 특성을 나타내었다. 즉, 주석산화물 삽입에 의해 표면개질된 MCMB 카본 분말은 기존의 MCMB에 비해 높은 초기 방전용량과 충전용량을 나타내었고, 또한 높은 가역특성과 좋은 cycleability를 보였다. 삽입된 SnO$_2$의 양이 증가할수록 높은 가역용량을 나타내었고 비가역용량 역시 높은 값을 나타내었다.

R.F. Magnetron Sputtering을 이용한 리튬이차전지 부극용 Sn1-xSixO2의 제조 및 특성 (Fabrication and Characterization of Sn1-xSixO2 Anode for Lithium Secondary Battery by R.F. Magnetron Sputtering Method)

  • 이상헌;박건태;손영국
    • 한국세라믹학회지
    • /
    • 제39권4호
    • /
    • pp.394-400
    • /
    • 2002
  • 리튬 이차전지용 부극재료로 미량의 실리콘이 첨가된 주석산화물 박막을 R.F. magnetron sputtering법을 이용하여 제조하였다. 실리콘의 첨가로 인해 주석의 산화상태를 감소시켜서 첫 번째 충방전 동안 비가역성을 감소시키는 전기 화학적 결과를 얻을 수 있었다. 주석 산화물 박막의 결정 배향성은 기판온도가 올라감에 따라서 (110),(101),(211) 면들이 성장하였다. 합성된 박막은 기판온도가 $300^{\circ}C$이고 $Ar:O_2$의 비가 7:3일때, 700mAh/g의 에너지 밀도를 가지며 가장 좋은 가역성능을 보여주었다.

GSC 기반 빔포밍을 위한 주파수 밴드별 전력비 분포의 혼합 가우시안 모델을 이용한 목표 음성신호의 검출 (Target Speech Detection Using Gaussian Mixture Model of Frequency Bandwise Power Ratio for GSC-Based Beamforming)

  • 장형욱;김영일;정상배
    • 한국정보통신학회논문지
    • /
    • 제19권1호
    • /
    • pp.61-68
    • /
    • 2015
  • 다양한 종류의 잡음에 의해서 발생하는 음성인식 성능 저하를 보상하기 위해서는 잡음제거가 필수적이다. 마이크로폰 배열을 이용하는 많은 잡음제거 기술 중에서, GSC는 비정상성 잡음을 제거하기 위해서 널리 적용되어 왔다. GSC의 성능은 AMC에 의해서 직접적인 영향을 받는다. 즉, 정확한 목표 음성 신호의 검출은 순수 잡음구간에서의 충분한 잡음제거 및 목표 음성구간에서의 적은 왜곡을 보장하기 위해서 필수적이다. 따라서, 본 논문에서는 고정 빔포밍의 출력과 차단 매트릭스의 출력간의 전력비가 주파수 밴드 단위로 계산되는 향상된 AMC 설계법을 제안한다. 그 후, 밴드별 전력비는 가우시안 혼합에 의해서 각 클래스가 확률적으로 모델링 된다. 실험결과, 제안한 알고리즘이 ROC 및 출력 SNR 관점에서 더 높은 성능을 보였다.

리튬 이온 이차전지 부극용 열분해 탄소 및 붕소첨가 탄소의 전기화학적 특성 (Electrochemical Properties of Pyrolytic Carbon and Boron-doped Carbon for Anode Materials In Li-ion Secondary Batteries)

  • 권익현;송명엽;방의용;한영수;김기태;이재영
    • 전기화학회지
    • /
    • 제5권1호
    • /
    • pp.30-38
    • /
    • 2002
  • 탄화수소가스를 고온$(1000^{\circ}C)$에서 열분해 하여 고상화하는 기상 열분해법을 사용하여 저결정질 탄소재를 제조하고 같은 방법으로 붕소를 첨가한 저결정질 탄소재$C_{l-x}B_x(x=0.05,\;0.10,\;0.20)$를 제조하여, 리튬 이온 이차전지의 부극으로서의 전기화학적 특성을 조사하였다. 시료 대 PVDF를 95:5의 무게비로 첨가한 경우, 붕소를 첨가하지 않은 저 결정질 탄소재(x=0.00)는 초기 방전용량 374mAh/g을 나타내었으며, 제 2싸이클부터는 싸이클 성능이 비교적 우수하여 제 10싸이클에서 258mAh/g의 방전용량을 나타내었다. 시료 대 PVDF를 95:5의 무게비로 첨가한 경우, $C_{1-x}B_x(x=0.00,\;0.05,\;0.10\;0.20)$ 시료들 중에서 x=0.05 조성의 시료는 가장 큰 초기 방전용량 860mAh/g을 나타내었으며, 10번째 싸이클에서 181mAh/g의 방전용량을 나타내었다. 제 2싸이클부터 싸이클 성능은 모두가 비슷하게 나타났다 초기방전 용량(PVDF $10wt.\%$ 사용시, 853mAh/g), 싸이클 성능, 방전용량(PVDF $10wt.\%$사용시 10번째 싸이클에서 400mAh/g)면에서 $C_{0.90}B_{0.10}$ 시료가 리튬이온 이차전지의 부극으로서의 가장 우수한 전기화학적 특성을 나타내었다. 합성한 탄소에 NMP를 용매로 한 액상 혼합 바인더(PVDF)를 90:10의 무게비로 첨가한 경우가 95:5의 무게비로 첨가한 경우보다 대체로 모든 조성에서 충$\cdot$방전용량이 크게 나타났다. 붕소가 첨가되어 덜 disordered된 구조가 됨으로써 1.25V보다 낮은 전압 부분에서 평탄구역이 증가하는 것으로 판단된다. 붕소가 첨가된 경우 충$\cdot$방전용량이 제 2싸이클에서부터 급격히 감소하였는데, 이는 첨가된 붕소가 제 1싸이클에서 삽입되는 Li과 일부는 강하게 결합하여 추출이 안되고 일부만이 다시 가역적으로 추출$\cdot$삽입되기 때문으로 생각된다. 붕소 첨가에 의한 충$\cdot$방전용량의 증가는, 붕소가 electron acceptor로 작용하여 삽입된 Li와 붕소-탄소 host 사이의 결합 강도를 증가시킴으로써 붕소치환 된 탄소에서 Li의 전위를 상승시키기 때문에 일어난다고 사려된다.

EC:MA 혼합전해질에서 카본 전극의 용량 특성 - I. 전기화학적 특성에 대한 혼합비의 영향 - (Properties of Capacity on Carbon Electrode in EC:MA Electrolytes - I. Effect of Mixing Ratio on the Electrochemical Properties -)

  • 박동원;김우성;손동언;김성필;최용국
    • 공업화학
    • /
    • 제17권2호
    • /
    • pp.183-187
    • /
    • 2006
  • 리튬-이온 전지에서 전해질 용액에 대한 용매의 선택은 충방전 특성의 개선을 위해 매우 중요하다. 여러 가지 용매 시스템이 리튬-이온 전지의 전해질로서 광범위하게 연구 되어졌다. 본 연구는 다양한 혼합비에서 제조한 1 M $LiPF_6/EC$ (ethylene carbonate) : MA (methyl acetate) (x:y) 전해질 용액의 용매 분해 전위와 카본 부극 표면에 형성된 Solid Electrolyte Interphase 피막의 전기화학적 성질을 시간대 전위법, 순환 전압- 전류법, 임피던스법을 이용하여 관찰하였다. 용매분해 전위는 전해질의 이온 전도도에 따라 전위가 달라졌고, 용매의 혼합비에 따라 피막의 전기화학적 특성이 변화되었음을 확인하였다. 결과적으로, 1 M $LiPF_6/(EC+MA)$ 시스템에서 가장 적절한 EC와 MA의 혼합비는 대략 1:3 (EC:MA, 부피비)이었다.

2006-2007년 여름 사례로 본 구름-지면 낙뢰와 강우의 관계 (On the Relation Between Cloud-to-Ground Lightning and Rainfall During 2006 and 2007 Summer Cases)

  • 오석근;서명석;이윤정
    • 한국지구과학회지
    • /
    • 제31권7호
    • /
    • pp.749-761
    • /
    • 2010
  • 본 연구에서는 2006-2007년 여름(6-8월)동안의 기상청 낙뢰 관측자료와 자동관측소 강우량 자료를 사용하여 여름철 낙뢰와 강우의 관계에 대해 분석하였다. 대부분의 부극성 낙뢰는 대류가 활발한 중심에 집중되어 발생하고 낙뢰빈도가 높고 강한 강우를 동반하였다. 반면 대부분의 정극성 낙뢰는 구름의 가장자리 또는 모루운에서 발생하고 낙뢰빈도는 낮으며, 약한 강우를 동반하였다. 일반적으로 강우강도는 부극성과 정극성이 함께 발생했을 경우 가장 강하고 부극성 낙뢰, 정극성 낙뢰, 그리고 낙뢰가 발생하지 않은 순으로 나타나고 있다. 여름철 전체 낙뢰 중 정극성 낙뢰의 비율은 평균 10% 이하이며 강우를 유발하지 않는 낙뢰의 비율은 평균 34%이다. 강우강도는 특히 부극성 낙뢰빈도와 높은양의 상관을 보였고, 낙뢰는 강우와 동시에 발생하거나 약 10분정도 선행하는 경향을 보였다. 낙뢰를 동반한 강우를 대류성 강우로 정의하여 분석한 결과 우리나라 여름철 강우 중 적어도 20% 이상은 대류성 강우이며 6, 7월보다는 8월에 대류성 강우가 많이 발생하고 있다. 또한 강우 및 낙뢰와 같이 대류성 강우의 비율도 오후에 최대치를 보이는 일변동을 보인다.

NMP로부터 제조된 Melt-blown흑연섬유의 안정화조건에 따른 미세구조와 전기화학적 특성 (Effect of Stabilization Conditions on the Microstructure and Electrochemical Properties of Melt-blown Graphite Fibers Prepared from NMP)

  • 김찬;양갑승;고장면;박상희;박호철;김영민
    • 전기화학회지
    • /
    • 제4권3호
    • /
    • pp.104-108
    • /
    • 2001
  • 용융분사법으로 나프탈렌계 메조페이스 피치(mP)를 방사하여 산화안정화 속도를 변화시켜 흑연화 섬유의 모폴러지를 제어하였으며, 흑연화 섬유를 이용하여 Li-ion 이차전지 부극을 제조하여 충$\cdot$방전 거동 및 용량을 측정하였다. 용융분사조건에 따라 제조된 피치섬유의 직경은 $4{\mu}m$로부터 $16{\mu}m$까지 다양하였다 이중에서 직경 $10{\mu}m$인 피치섬유를 선택하여 세가지 승온속도 조건 $2^{\circ}C/min,\;5^{\circ}C/min,\;10^{\circ}/min$에서 산화안정화 후 $1000^{\circ}C$에서 탄소화하여 $2650^{\circ}C$에서 흑연화 한 결과, 섬유 단면이 산화안정화 조건 $2^{\circ}C/min$의 경우는 라디알 구조, $5^{\circ}C/min$의 것은 라디알-랜덤 구조, $10^{\circ}C/min$의 경우는 skin-core 구조를 형성하였고, 승온속도가 큰 경우일수록 이흑연화성이 컷다. 이것은 큰 승온속도에서는 탄소화$\cdot$흑연화 과정에서 섬유표면에서만 산화안정화가 일어나고, 내부에서는 피치분자가 유동성이 커 승온과정에서 고결정성의 흑연구조가 발달한 것으로 추측된다. 따라서 이흑연화성이 큰 $10^{\circ}C/min$에서 산화안정화 한 것이 충전방전 용량이 $2^{\circ}C/min$의 경우에 비해서 1.3배로 약 400mAh/g, 충방전 효율도 $96.8\%$로 가장 우수한 특성을 나타냈다.