• Title/Summary/Keyword: 부가압력

Search Result 104, Processing Time 0.028 seconds

Interaction of Local Roughness and Turbulent Boundary Layer (국소거칠기와 난류 경계층과의 상호작용)

  • 문철진
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.27 no.2
    • /
    • pp.120-124
    • /
    • 1991
  • An interaction of turbulent boundary layer and local roughness effects was evaluated to investigate the shear frictional coefficient in diffuser. Clauser roughness function was applied to Karman's integral equation for governing equation. The roughness of overall and local diffuser surfaces were calculated using Cole's wall and wake law and Clauser's roughness function for turbulent boundary layer characteristics. The calculating results were compared with the experimental results of other paper. It shows some significant improyements for shear frictional coefficient. Computer code was then used to confirm the behavior of local frictional coefficient along with diffuser roughness surface for some reduction of shear flow stress.

  • PDF

Addtion Reaction of Phenyl Glycidyl Ether with Carbon Dioxide Using Phase Transfer Catalysts (상이동 촉매에 의한 Phenyl Glycidyl Ether와 이산화탄소의 부가반응)

  • Park, Dae-Won;Moon, Jeong-Yeol;Yang, Jeong-Gyu;Park, Sung-Hoon;Lee, Jin-Kook
    • Applied Chemistry for Engineering
    • /
    • v.7 no.1
    • /
    • pp.26-33
    • /
    • 1996
  • This study is related to the investigation of the characteristics of phase transfer catalysts on the addition reaction of carbon dioxide and phenyl glycidyl ether(PGE). Quaternary ammonium salts showed a good conversion of PGE at l atm of $CO_2$. Among the quaternary ammonium salts tested, the ones with higher alkyl chain length and with more hydrophilic counter anion showed higher catalytic activity. Polyethylene glycol and crown ether were also effective catalysts when they are used with NaI. High pressure of $CO_2$increased the conversion of PGE by increasing solubility of $CO_2$in NMP. A mechanism of the reaction involving the role of phase transfer catalyst was also proposed.

  • PDF

Enhanced Oil Recovery (EOR) Technology Coupled with Underground Carbon Dioxide Sequestration (CO2 지하저장과 연계한 원유회수증진 기술)

  • Kim, Hyung-Mok;Bae, Wi-Sup
    • Tunnel and Underground Space
    • /
    • v.23 no.1
    • /
    • pp.1-12
    • /
    • 2013
  • Enhanced oil recovery (EOR) technology coupled with underground carbon dioxide sequestration is introduced. $CO_2$ can be injected into an oil reservoir in order to enhance oil production rate and $CO_2$ EOR can be turned into CCS in a long term sense. Coupling $CO_2$ EOR with CCS may secure a large scale and consistent $CO_2$ source for EOR, and the $CO_2$ EOR can bring an additional economic benefit for CCS, since the benefit from enhanced oil production by $CO_2$ EOR will compensate costs for CCS implementation. In this paper, we introduced the characteristics of $CO_2$ EOR technology and its market prospect, and reviewed the Weyburn $CO_2$ EOR project which is the first large-scale $CO_2$ EOR case utilizing an anthropogenic $CO_2$ source. We also introduced geotechnical elements for a successful and economical implementation of $CO_2$ EOR with CCS and they were a miscroseismic monitoring during and after injection of $CO_2$, and determination of minimum miscible pressure (MMP) and maximum injection pressure (MIP) of $CO_2$.

Determination of Minimal Pressure Support Level During Weaning from Pressure Support Ventilation (압력보조 환기법으로 기계호흡 이탈시 최소압력보조(Minimal Pressure Support) 수준의 결정)

  • Jung, Bock-Hyun;Koh, Youn-Suck;Lim, Chae-Man;Lee, Sang-Do;Kim, Woo-Sung;Kim, Dong-Soon;Kim, Won-Dong
    • Tuberculosis and Respiratory Diseases
    • /
    • v.45 no.2
    • /
    • pp.380-387
    • /
    • 1998
  • Background: Minimal pressure support(PSmin) is a level of pressure support which offset the imposed work of breathing(WOBimp) developed by endotracheal tube and ventilator circuits in pressure support ventilation While the lower applied level of pressure support compared to PSmin could induce respiratory muscle fatigue, the higher level than PSmin could keep respiratory muscle rest resulting in prolongation of weaning period during weaning from mechanical ventilation PSmin has been usually applied in the level of 5~10 cm$H_2O$, but the accurate level of PSmin is difficult to be determinated in individual cases. PSmin is known to be calculated by using the equation of "PSmin = peak inspiratory flow rate during spontaneus ventilation$\times$total ventilatory system resistance", but correlation of calculated PSmin and measured PSmin has not been known. The objects of this study were firstly to assess whether customarily applied pressure support level of 5~10 cm$H_2O$ would be appropriate to offset the imposed work of breathing among the patients under weaning process, and secondly to estimate the correlation between the measured PSmin and calculated PSmin. Method : 1) Measurement of PSmin : Intratracheal pressure changes were measured through Hi-Lo jet tracheal tube (8mm in diameter, Mallinckroft, USA) by using pulmonary monitor(CP-100 pulmonary monitor, Bicore, USA), and then pressure support level of mechanical ventilator were increased until WOBimp was reached to 0.01 J/L or less. Measured PSmin was defined as the lowest pressure to make WOBimp 0.01 J/L or less. 2) Calculation of PSmin : Peak airway pressure(Ppeak), plateau airway pressure(Pplat) and mean inspiratory flow rate of the subjects were measured on volume control mode of mechanical ventilation after sedation. Spontaneous peak inspiratory flow rates were measured on CPAP mode(O cm$H_2O$). Thereafter PSmin was calculated by using the equation "PSmin = peak inspiratory flow rate$\times$R, R = (Ppeak-Pplat)/mean inspiratory flow rate during volume control mode on mechanical ventilation". Results: Sixteen patients who were considered as the candidate for weaning from mechanical ventilation were included in the study. Mean age was 64(${\pm}14$) years, and the mean of total ventilation times was 9(${\pm}4$) days. All patients except one were males. The measured PSmin of the subjects ranged 4.0~12.5cm$H_2O$ in 14 patients. The mean level of PSmin was 7.6(${\pm}2.5\;cmH_2O$) in measured PSmin, 8.6 (${\pm}3.25\;cmH_2O$) in calculated PSmin Correlation between the measured PSmin and the calculated PSmin is significantly high(n=9, r=0.88, p=0.002). The calculated PSmin show a tendancy to be higher than the corresponding measured PSmin in 8 out of 9 subjects(p=0.09). The ratio of measured PSmin/calculated PSmin was 0.81(${\pm}0.05$). Conclusion: Minimal pressure support levels were different in individual cases in the range from 4 to 12.5 cm$H_2O$. Because the equation-driven calculated PSmin showed a good correlation with measured PSmin, the application of equation-driven PSmin would be then appropriate compared with conventional application of 5~10 cm$H_2O$ in patients under difficult weaning process with pressure support ventilation.

  • PDF

Design of Smart Pillow System for Managing Sleep Apnea (수면무호흡증을 관리를 위한 스마트 베개 시스템의 설계)

  • Lee, Jong Chan
    • Journal of the Korea Convergence Society
    • /
    • v.11 no.1
    • /
    • pp.33-39
    • /
    • 2020
  • Specialists have developed pillows that take into account sleep science and ergonomics, such as comfort for lying on your side. This pillow is made of natural latex material, and improved resilience after a certain period of time. A new idea was added to the pillow, which was naturally used for sleep, but could it add additional features for health care. Here, health care targets sleep apnea, which is known to be associated with serious illness. The purpose of this paper is to design a comprehensive service that uses a pressure sensor and a voice sensor to obtain information and to identify abnormal symptoms related to diseases from this information and to refer them to a specialist. It also covers the basic design and implementation to confirm the success of this system. Based on this design, the information obtained will be converted into a DB, and a server system for consultation with a specialist will be completed to upgrade the role of assistive health devices for sleep apnea.

Study on Configuration Design of Inlet and Exhaust Ducts of a Turboprop Engine for the Altitude Test Considering performance losses (성능손실을 고려한 고고도시험용 터보프롭 엔진 흡입구 및 배기구 형상설계에 관한 연구)

  • Kong, C.;Kim, K.;Lim, S.;Yoo, J.;Choi, K.
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2011.04a
    • /
    • pp.144-152
    • /
    • 2011
  • In order to investigate the operation performance behaviors of the UAV's propulsion system to be operated long time in high altitude, the engine performance tests, which are simulated in the altitude engine test facility should be needed. If the test is performed in a existing altitude engine test facility, additional test apparatuses are required. Among them a proper design of the inlet and exhaust ducts that may directly affect the engine performance is very important. If the design is not adequate, the engine performance loss due to the flow behavior change and the pressure loss may be not similar to the real engine performance. In this work, firstly the engine inlet and exhaust ducts to be mounted to the existing altitude facility are modelled in 3D and its flow behaviors and pressure losses are analyzed using a commercial CFD tool, ANSYS's CFX, and the engine performance with the duct losses is calculated using the performance analysis program developed by C. Kong et al. Finally, the optimized inlet and exhaust ducts' configurations are proposed through the repeated analyses of various duct configurations.

  • PDF

A Study on the Vibration of Characteristics of 3-Dimension Submerged Vehicle in Consideration of Fluid-Structure Interaction (유체력을 고려한 3차원 수중압력선체의 진동특성에 관한 연구)

  • 손충렬;황인하;이강수
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 2000.04a
    • /
    • pp.81-88
    • /
    • 2000
  • Unlike structures in the air, the vibration analysis of a submerged or floating structure such as offshore structures or ships is possible only when the fluid-structure interaction is understood, as the whole or part of the structure is in contact with water. Specially, the importance of the added mass is not necessary to say like the submerged vehicle, all of the hull body, is positioned in the water. This paper introduce two method to find natural frequency in consideration of fluid-structure modal coupled vibration analysis. The purpose of this study is to analyze of the vibration characteristic of submerged vehicle to obtain the anti-vibration design data, which could be used in the preliminary design stage data. Underwater pressure hull of submerged vehicle is used as the model of this study. The F.E.M model is meshed by shell and beam element. Also, considering of the inner hull weight, mass element is distributed in the direction of hull length. Numerical calculations are accomplished using the commercial B.E.M code. The characteristics of natural frequency(eigenvalues), mode shape(eigenvectors) and frequency-displacement response are analyzed. The results of this study will be used as the useful design data in preliminary anti-vibration design stage.

  • PDF

초경 합금의 초정밀 평면연삭 가공에 관한 연구

  • 강재춘
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1992.04a
    • /
    • pp.55-59
    • /
    • 1992
  • 최근 신 연삭 공구인 미세한 지립의 다이아몬드 휠을 이용함으로써 고경도와 취성을 지니는 엔지 니어링 세라믹스등의 신소재및 초경재 등 난삭재류를 대상으로 경면 가공을 추구하고자 노력이 진행중이다. 이는 래핑이나 폴리싱 등의 유리 지립에 의한 경면 창성법에 비하여 가공 능률이나 가공 정도가 높고 곡면이나 홈 등의 복잡 형상부의가공에도적용할 수 있다는 잇점이 있기 때문이다. 따라서 현재 이러한 신 연삭 가공법은 지금까지 연삭 가공후에 연마 가공 공정을 부가함으로써 초정 밀 효과를 지닐 수 있었던 각종 부품들에대한 단일 최종 마무리가공 공정으로의 응용에많은 기대를 걸고 있다. 본 연구는 높은 압축 강도치, 고온경도치와 내마모성, 강성 등을 지님으로써 외부 압력에 대한 변형률이 극히 적어 금형 칫수에가까운 제품을 생산할 수 있다는 특성으로 근래그 사용도가 급증 하고 있는 초경합금 금형재를 대상으로 해그 동안 난삭재에 대한 최적 가공 조건 설정이 정립되어 있지 못했던 관계로 인하여 기존의 숙련자 경험에만 주로 의존 할 수 밖에 없었던 단순한 다이아몬드 연삭 공구의 활용추세로부터 탈피하고 Diamond wheel 및 범용 연삭 공구를 최적으로 활용함으로써 연삭 가공의 초정밀화를 달성하며후 가공을 생략할 수 있는 가공 공정을 창출 해내기위하여, 상관 관계를 연삭 저항 및 가공 표면 품위등의 측면으로분석, 평가해봄으로써 초정밀 가공 차원에서의 최적 가공 조건 설정을 위한 지침을 명확하게 규명하기 위하여 실험적으로 수행하게 된 것이다.

KT-1 토카막의 전자석 코일에 의한 유도가열탈리

  • 정승호;박선기
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 1999.07a
    • /
    • pp.34-34
    • /
    • 1999
  • 토카막(Tokamak)에서는 플라즈마(plasma)로 불순불(impurity)의 유입을 방지하기 위해 고진공을 유지해야 하며 이를 위해 가열탈리(backing), 방전세정(discharge codanning) 등 wall conditioning이 기본적으로 요구된다. KT-1 토카막은 실험실 이전에 따른 해체로 인해 진공용기(vacuum vessel) 가 대기압 하에 수개월 동안 노출되어 있었기 때문에 재조립 후 가열 탈 리가 필수적이나 진공용기의 외부에 saddle loop coil을 비롯해 Rogowski, diamagnetic coil, poloidal field coil 등 많은 magnetic pick up coil 들이 설치되어 있어 열선 등 일반적인 방법으로 가열 탈 리가 어려운 상황이다. 따라서 KT-1 토카막에서는 전자석 코일에 상전원을 부가하였을 때 진공용기에 발생하는 유도가열 (inductive heatin)을 이용해 가열 탈리를 시도하였다. 유도 가열 탈리(inductive backing)는 토로이달 자장 코일(toroidal field coil)과 가열 저장 모일(ohmic heating coil)을 각각 이용하여 코일의 온도가 6$0^{\circ}C$ 이하가 유지되는 코일 전류 범위내에서 수행하였으며 먼저 이 둥 경우에 있어서 진공용기의 온도분포를 비교하엿다. 그리고 가열 탈리 기간 및 그 전, 후의 진공압력과 잔류기체 분압을 측정, 분석하였다. 유도가열에 의한 방법으로 KT-1 토카막에서 얻은 탈리온도는 12$0^{\circ}C$정도로 비교적 낮았으나 탈리 시간을 연장하여 탈리효과를 어느 정도 보상할 수 있으며 일반적인 가열 탈리가 여려운 경우 유도 가열 탈 리가 채택될 수 있는 또 하나의 방법이라 볼 수 있다.

  • PDF

Numerical analysis of a turbulent boundary layer with pressure gradient using Reynolds-transport turbulence model (레이놀즈 응력모델을 이용한 압력구배가 있는 난류경계층의 유동장 해석)

  • Lee, Seong-Hyeok;Yu, Hong-Seon;Choe, Yeong-Gi
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.22 no.3
    • /
    • pp.280-293
    • /
    • 1998
  • Numerical study on turbulent and mean structures of a turbulent boundary layer with longitudinal and spanwise pressure gradient is carried out by using Reynolds-stress-model (RSM). The existence of pressure gradient in a turbulent boundary layer causes the skewing or divergence of rates of strain, which contributes to production of turbulent kinetic energy. Also, this augmentation of production due to extra rates of strain can increase the turbulent mixing and cause the anisotropy of turbulent intensities in the outer layer. This paper uses the Reynolds Stress Model to capture anisotropy of turbulent structures effectively and is devoted to compare the results computed by using RSM and the standard k-.epsilon. model with experimental data. It is concluded that the RSM can produce the more accurate predictions for capturing the anisotropy of turbulent structure than the standard k-.epsilon. model.