• Title/Summary/Keyword: 볼록 조합

Search Result 11, Processing Time 0.019 seconds

Multiresolution Mesh Editing based on the Extended Convex Combination Parameterization (확장 볼록 조합 매개변수화 기반의 다중해상도 메쉬 편집)

  • 신복숙;김형석;김하진
    • Journal of Korea Multimedia Society
    • /
    • v.6 no.7
    • /
    • pp.1302-1311
    • /
    • 2003
  • This paper presents a more stable method of multiresolution editing for a triangular mesh. The basic idea of our paper is to embed an editing area of a mesh onto a 2D region and to produce 3D surfaces which interpolate the editing-information. In this paper, we adopt the extended convex combination approach based on the shape-preserving parameterization for the embedding, which guarantees no self-intersection on the 2D embedded mesh. That is, the result of the embedding is stable. Moreover, we adopt the multi-level B-spline approach to generate the surface containing all of 3D editing-information, which can make us control the editing area in several levels. Hence, this method supports interactive editing and thus can produce intuitive editing results.

  • PDF

Mesh Parameterization based on Mean Value Coordinates (중간값 좌표계에 기초한 메쉬 매개변수화)

  • Kim, Hyoung-Seok B.
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.12 no.8
    • /
    • pp.1377-1383
    • /
    • 2008
  • Parameterization of a 3D triangular mesh is a fundamental problem in various applications of geometric modeling and computer graphics. There are two major paradigms in mesh parameterization: energy functional minimization and the convex combination approach. In general, the convex combination approach is wifely used because of simple concept and one-to-one mapping. However, the approach has some problems such as high distortion near the boundary and time complexity. Moreover, the stability of the linear system may not be preserved according to the geometric information of the mesh. In this paper, we present an extension of the convex combination approach based on the mean value coordinates, which resolves the drawbacks of the convex combination approach. This may be a more practical solution because it is able to generate a stable linear system in a short time.

Study on Environment Estimation from Omnidirectional Vision Sensor (전(全)방향 이미지를 이용한 환경 추정에 관한 연구)

  • 박영미;구경모;차의영
    • Proceedings of the Korea Multimedia Society Conference
    • /
    • 2003.11a
    • /
    • pp.265-268
    • /
    • 2003
  • 파노라믹 이미지를 이용한 환경감시 및 탐사에 관한 지속적인 연구는 실시간으로 이미지를 얻고 탐사를 수행하는 연구형태로 발전하고 있다. 본 논문에서는, 한대의 카메라와 하나의 볼록 거울의 조합을 이용하여 실시간으로 얻어지는 전(全)방향 이미지로부터 바닥정보를 추출하여 지역정보(Local Map)를 얻고, 그 정보에 기반 하여 로봇의 이동을 제어하고 전역정보(Global Map)를 구성하는 새로운 방법을 제안한다.

  • PDF

Liquid Crystal Lens for the Compensation of Spherical Aberration

  • 정석호;최성욱;왕지석;김영주
    • 정보저장시스템학회:학술대회논문집
    • /
    • 2005.10a
    • /
    • pp.151-152
    • /
    • 2005
  • Blu-ray 디스크에서는 NA=0.85 의 높은 개구수를 채용함으로써 디스크 보호층의 두께 변동에 따른 구면수차 발생량이 매우 커지는 문제가 발생하게 된다. 따라서 디스크 두께 공차 $3{\mu}m$에서 Blu-ray 시스템의 수차 발생 허용수준을 초과한다. 그리고 Multi-layer 디스크의 경우 각 층의 간격이 $25{\mu}m$ 정도의 간격을 두고 배치되어 있어 기록층 사이에서 발생하는 구면수차의 보정이 필요하며, 종래의 기술은 보상범위가 $3{\mu}m$로 한정되어 사용이 불가능하며 또한 대물렌즈 조립공차가 엄격히 관리되어야 하는 문제점을 안고 있었다. 본 연구에서는 액정렌즈에 의한 구면수차 보정으로 이러한 문제점들을 해결하고자 하였다. 액정렌즈는 오목렌즈 액정소자와 볼록렌즈 액정소자로 구성되며 픽업 광학계 내에 조합하여 설계함으로써 Multi-layer 디스크의 두께 변동에 따라 발생하는 구면수차를 보정하고 대물렌즈 조립공차 문제를 해결할 수 있다.

  • PDF

A Study on Orthogonal Cross Cylinder Map using Catadioptric Camera (카타디옵트릭 카메라를 이용한 직각교차실린더맵에 관한 연구)

  • Koo, Kyung-Mo;Kim, Byoung-Hun;Kim, Ha-Young;Cha, Eui-Young
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2004.05a
    • /
    • pp.789-792
    • /
    • 2004
  • 본 논문에서는 일반적인 실린더 맵에서 구현하지 못하는 시점이동의 한계를 보완하고 현실감 있는 실시간 영상기반 환경 탐색을 위해 완전시야를 갖는 직각 교차 실린더 맵을 제안한다. 제안한 알고리즘에서는 한 대의 카메라와 하나의 볼록거울의 조합으로 이루어진 카타디옵트릭 카메라를 이용하여 수평, 수직 두 개의 전(全)방향 이미지를 얻고, 이미지를 실린더에 매핑한 뒤 두 실린더를 합하는 방법을 이용하였다. 실험에서는 제안한 방법이 기존의 방법에 비해 시선이동 뿐만 아니라 환경 탐색에 자유로워짐을 확인한다.

  • PDF

A Study of Short-Term Load Forecasting System Using Data Mining (데이터 마이닝을 이용한 단기 부하 예측 시스템 연구)

  • Joo, Young-Hoon;Jung, Keun-Ho;Kim, Do-Wan;Park, Jin-Bae
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.14 no.2
    • /
    • pp.130-135
    • /
    • 2004
  • This paper presents a new design methods of the short-term load forecasting system (STLFS) using the data mining. The structure of the proposed STLFS is divided into two parts: the Takagi-Sugeno (T-S) fuzzy model-based classifier and predictor The proposed classifier is composed of the Gaussian fuzzy sets in the premise part and the linearized Bayesian classifier in the consequent part. The related parameters of the classifier are easily obtained from the statistic information of the training set. The proposed predictor takes form of the convex combination of the linear time series predictors for each inputs. The problem of estimating the consequent parameters is formulated by the convex optimization problem, which is to minimize the norm distance between the real load and the output of the linear time series estimator. The problem of estimating the premise parameters is to find the parameter value minimizing the error between the real load and the overall output. Finally, to show the feasibility of the proposed method, this paper provides the short-term load forecasting example.

Construction of Modified Yield Loci with Respect to the Strain Rates using Hill48 Quadratic Yield Function (Hill48 이차 항복식을 이용한 변형률 속도에 따른 수정된 항복곡면의 구성)

  • Lee, Chang-Soo;Bae, Gi-Hyun;Kim, Seok-Bong;Huh, Hoon
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.18 no.2
    • /
    • pp.56-60
    • /
    • 2010
  • Since the forming process involves the strain rate effect, a yield function considering the strain rate is indispensible to predict the accurate final blank shape in the forming simulation. One of the most widely used in the forming analysis is the Hill48 quadratic yield function due to its simplicity and low computing cost. In this paper, static and dynamic uni-axial tensile tests according to the loading direction have been carried out in order to measure the yield stress and the r-value. Based on the measured results, the Hill48 yield loci have been constructed, and their performance to describe the plastic anisotropy has been quantitatively evaluated. The Hill48 quadratic yield function has been modified using convex combination in order to achieve accurate approximation of anisotropy at the rolling and transverse direction.

Performance of the Road Network with Market Penetration Rates and Traffic Volumes of Autonomous Vehicle using Traffic Simulation (시뮬레이션 기반 자율주행자동차 혼입률과 교통량 변화에 따른 도로 네트워크의 성능 분석)

  • Do, Myungsik;Jeong, Yumi
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.44 no.3
    • /
    • pp.349-360
    • /
    • 2024
  • The purpose of this study is to analyze the performance of the road network according to the penetration rate of autonomous vehicles (AV) of Level 4 or higher and the change in traffic volume. First, prior studies related to vehicle control variables of AV were reviewed, and future traffic demand in 2040, which is predicted to have a 50 % market share of AVs, was reflected in the simulation analysis. In addition, the change in traffic flow of continuous and intermittent flows was analyzed by increasing the AV market penetration rate and traffic volume of passenger cars, trucks, and buses by 25 % step by step from 0 to 100 %. As a result of the analysis, it was confirmed that the travel time increased as the traffic increased, and the pattern of decreasing the travel time due to the increase in the share of AVs, that is, the development of technology, can also be confirmed. Furthermore, it was also confirmed that the traffic speed showed a trend of increasing as the share of AVs increased. In this study, it was confirmed that the law of diminishing marginal rate of substitution (MRS) was satisfied by calculating the MRS according to the combination of traffic volume and speed while increasing the market penetration rate of AVs. Furthermore, it was confirmed that the convexity of the indifference curve was also satisfied in both intermittent and continuous traffic flow environments.

Intelligent Digital Redesign for Uncertain Nonlinear Systems Using Power Series (Powrer Series를 이용한 불확실성을 갖는 비선형 시스템의 지능형 디지털 재설계)

  • Sung Hwa Chang;Park Jin Bae;Go Sung Hyun;Joo Young Hoon
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.15 no.7
    • /
    • pp.881-886
    • /
    • 2005
  • This paper presents intelligent digital redesign method of global approach for hybrid state space fuzzy-model-based controllers. For effectiveness and stabilization of continuous-time uncertain nonlinear systems under discrete-time controller, Takagi-Sugeno(TS) fuzzy model is used to represent tile complex system. And global approach design problems viewed as a convex optimization problem that we minimize the error of the norm bounds between nonlinearly interpolated linear operators to be matched. Also, by using the power series, we analyzed nonlinear system's uncertain parts more precisely. When a sampling period is sufficiently small, the conversion of a continuous-time structured uncertain nonlinear system to an equivalent discrete-time system have proper reason. Sufficiently conditions for the global state-matching of tile digitally controlled system are formulated in terms of linear matrix inequalities (LMIs). Finally, a TS fuzzy model for the chaotic Lorentz system is used as an example to guarantee the stability and effectiveness of the proposed method.

Analysis of the applicability of parameter estimation methods for a transient storage model (저장대모형의 매개변수 산정을 위한 최적화 기법의 적합성 분석)

  • Noh, Hyoseob;Baek, Donghae;Seo, Il Won
    • Journal of Korea Water Resources Association
    • /
    • v.52 no.10
    • /
    • pp.681-695
    • /
    • 2019
  • A Transient Storage Model (TSM) is one of the most widely used model accounting for complex solute transport in natural river to understanding natural river properties with four TSM key parameters. The TSM parameters are estimated via inverse modeling. Parameter estimation of the TSM is carried out by solving optimization problem about finding best fitted simulation curve with measured curve obtained from tracer test. Several studies have reported uncertainty in parameter estimation from non-convexity of the problem. In this study, we assessed best combination of optimization method and objective function for TSM parameter estimation using Cheong-mi Creek tracer test data. In order to find best optimization setting guaranteeing convergence and speed, Evolutionary Algorithm (EA) based global optimization methods, such as CCE of SCE-UA and MCCE of SP-UCI, and error based objective functions were compared, using Shuffled Complex-Self Adaptive Hybrid EvoLution (SC-SAHEL). Overall results showed that multi-EA SC-SAHEL with Percent Mean Squared Error (PMSE) objective function is the best optimization setting which is fastest and stable method in convergence.