• Title/Summary/Keyword: 복합 물리탐사

Search Result 96, Processing Time 0.021 seconds

Geologic Structure Analysis from the Integration of Magnetotelluric and Gravity Models at Hwasan Caldera (화산칼데라 지역 중력 및 자기지전류 탐사 자료의 복합해석을 통한 지질구조 해석)

  • Park, Gye-Soon;Oh, Seok-Hoon;Lee, Heui-Soon;Kim, Jung-Ho;Kwon, Byung-Doo
    • 한국지구물리탐사학회:학술대회논문집
    • /
    • 2008.10a
    • /
    • pp.21-26
    • /
    • 2008
  • A multi-geophysical surveys were carried out at Hwasan caldera which is located in Euisung Sub-basin. In order to overcome the limitation of the previous studies, dense gravity data and magnetotelluric (MT) data were obtained and integrated. In this study, the independent inversion models from gravity and MT method were integrated using a correlation and classification approaches to map geologic structure. The results of integration analysis indicated followings; 1) pyroclastic rocks around the central area of Hwasan caldera have lower density and resistivity when compared with those of neighborhood regions and are extended to around 1 km in depth, 2) the high resistivity and density intrusive igneous rocks are imaged around the ring fault boundary, and 3) the basement structure, which has low resistivity and high density, 5 km deep inferred by integration analysis. Also, for integration analysis, we suggested Structure Index method. This method is analyzed using Type Angle and Type Intensity, which are calculated by the spatial correlation of the physical properties. In this study, we can perform the integration analysis effectively using Structure Index method.

  • PDF

Geophysical Investigation for Detecting a Bedrock and Geological Characterization in Natural Slope (자연사면에서 기반암 및 지질특성을 탐지하기 위한 지구물리 조사)

  • Park, Jong-Oh
    • The Journal of Engineering Geology
    • /
    • v.19 no.1
    • /
    • pp.1-8
    • /
    • 2009
  • Geophysical surveys were conducted on an upper part of a natural slope located at Daejeon University. Electrical resistivity and seismic refraction measurements were carried out to obtain information on a weathered zone and internal structure at shallow depth, while AMT measurement a bed rock and geological structure at deep depth. With all the techniques applied, these results show a good correlation between electrical resistivity images and refraction velocity distributions for the characterization of a weathering and geological structure at depth. In particular, AMT survey seems to be the powerful tool for detecting a distribution of a bed rock with deep depth. The combined geophysical investigation produced a detailed image of a subsurface structure and improved well in the interpretation.

Geostatistical Integration of MT and Borehole Data for RMR Evaluation (암반등급 평가를 위한 MT와 시추공 자료의 지구통계학적 복합해석)

  • Oh, Seok-Hoon;Chung, Ho-Joon;Lee, Duk-Kee
    • Geophysics and Geophysical Exploration
    • /
    • v.7 no.2
    • /
    • pp.121-129
    • /
    • 2004
  • The geostatistical approach was applied to integrate MT (Magneto-telluric) resistivity data and borehole information for the spatial RMR (Rock Mass Rating) evaluation. Generally, resistivity of the subsurface is believed to be positively related to the RMR, thus the resistivity and borehole RMR information was combined in a geostatistical approach. To relate the two different sets of data, we take the MT resistivity data as secondary information and estimate the RMR mean values at unsampled points by identification of the resistivity to the borehole data. Two types of approach are performed for the estimation of RMR mean values. Then the residuals of the RMR values around the borehole sites are geostatistically modeled to infer the spatial structure of difference between real RMR values and estimated mean values. Finally, this geostatistical estimation is added to the previous means. The result applied to a real situation shows prominent improvements to reflect the subsurface structure and spatial resolution of RMR information.

A Study of 3D Ore-Modeling by Integrated Analysis of Borehole and Geophysical Data (시추자료와 물리탐사자료의 복합해석을 통한 3차원 광체 모델링 연구)

  • Noh, Myounggun;Oh, Seokhoon;Ahn, Taegyu
    • Geophysics and Geophysical Exploration
    • /
    • v.16 no.4
    • /
    • pp.257-267
    • /
    • 2013
  • 3-D ore modeling was performed to understand the configuration of ore bodies by integrated analysis of borehole and geophysical data in iron-mine area. Five representative indices of rocks were designated, which were obtained from geological survey and borehole. The five indices of rocks were geostatistically simulated by Sequential Indicator Simulation method to delineate boundary of the ore bodies. And Ordinary Kriging and Sequential Gaussian Simulation was applied to make secondary information using resistivity data from magnetotellurics and DC resistivity survey, and this information was used for simple kriging with local varying means, one of integrated kriging techniques. From the correlation analysis between each properties, it was found that high grade of ore is characterized by increased density, whereas the electrical resistivity decreases. With the integrated results of geophysical and borehole data, it was also found that the real configuration of ore body was similar to the modeled result and information about ore grade in 3-D space was obtained.

Hydrogeologic Structure derived from Electrical and CSMT Surveys in the Chojung Area (전기 및 CSMT 탐사를 이용한 초정지역의 수리지질 구조 해석)

  • Song Sung-Ho;Yong Hwan-Ho;Kim Jin-Ho;Song Seung-Yup;Chung Hyung-Jae
    • Geophysics and Geophysical Exploration
    • /
    • v.5 no.2
    • /
    • pp.118-125
    • /
    • 2002
  • The hydrogeologic structure in the Chojung area was evaluated from a set of geological and geophysical investigations: detailed geological survey, vertical electric sounding (VES), borehole logging, and controlled-source magnetotelluric (CSMT) survey. Among these, CSMT soundings were taken for integrated interpretation to extend hydrogeologic structure with depth. The result of CSMT survey along with VES and borehole logging provides the vertical geologic boundary connected with hydrogeologic structure, and also indicates the depth of aquifer in granite basement. To interpret the geologic boundary and aquifer characteristics using CSMT data, we adopted the technique of 1-D inversion with smoothness-constrained method and 2-D continuous profiling with 1-D Bostick inversion and spatial filtering. The methodology tested and adopted in this study would be useful and required for providing a more information to the structure of fractured aquifer system.

Downscaling of Geophysical Data for Enhanced Resolution by Geostatistical Approach (물리탐사 자료의 해상도 향상을 위한 지구통계학적 다운스케일링)

  • Oh, Seok-Hoon;Han, Seong-Mi
    • Journal of the Korean earth science society
    • /
    • v.31 no.7
    • /
    • pp.681-690
    • /
    • 2010
  • Inversion result of geophysical data given as a block type was geostatistically simulated with borehole observation given as a point type and was applied to the rock classifying map. The geophysical data generally involved secondary information for the target material and were obtained for overall region. In contrast, borehole data provided direct information for the target material, but tended to be effective only for a narrow range of region and were dealt as a point type. Integrated simulation or kriging interpolation of these two different kinds of information required the covariance for point-point, point-block and block-block. Using the Bssim module included in SGeMS software, integrated result of geophysical data and borehole data were obtained. The results were then compared with the method of geostatistical inversion proposed by authors. Downscaling method used in this study showed relatively more flexible than the geostatistical inversion.

Integrated Interpretation of Geophysical Data and its Application by Geostatistical Approach (지구통계학적 방식에 의한 물리탐사 자료의 복합해석과 그 응용)

  • Oh, Seok-Hoon;Chung, Ho-Joon;Suh, Baek-Soo
    • 한국지구물리탐사학회:학술대회논문집
    • /
    • 2007.06a
    • /
    • pp.48-53
    • /
    • 2007
  • A new way to integrate various geophysical information for evaluation of RQD was developed. In this study, we did not directly define the RQD value where borehole data are not sampled. Instead, we infer the probability of RQD values with prior probability from borehole direct data, and secondary supporting probability from resistivity and seismic tomography data. For the integration, we applied the geostatstical indicator kriging to get prior probability of RQD value, and indicator kriging with soft data to get the supporting probability from resistivity and seismic data. And we finally use the permanence ratio rule to integrate these information. The finally obtained result was also analyzed to fully utilize the probabilistic features. We show the probability of wrongly classifying the RQD evaluation and vice versa. This result may be used for decision making process based on the geophysical exploration.

  • PDF

Geostatistical inversion of geophysical data for estimation of rock quality (물리탐사 자료의 지구통계학적 역산에 의한 암반강도 추정)

  • Oh, Seok-Hoon;Suh, Baek-Soo
    • 한국지구물리탐사학회:학술대회논문집
    • /
    • 2008.10a
    • /
    • pp.63-67
    • /
    • 2008
  • Geostatistical inverse approach using geophysical data was applied to indirectly make the RMR classification at points apart from boreholes. The geostatistical appoach was usually used to find optimized estimation which supports two or more different physical properties at unsampled points. However, in this study, an approach to solve inverse problem was proposed. The primary variable, RMR values obtained at known boreholes, is geostatistically simulated with many realization at pre-defined grid point according to the variogram model. The simulated values are sequentially compared with the physical property resulted from geophysical survey at an arbitrary grid point, and the most similar one is chosen. This process means that the spatial distribution of primary variable, RMR, is conformed well to the original pattern of the borehole observation, and ensure to fit the geophysical survey result to reflect the correlation between different physical properties.

  • PDF

A Study of Geophysical Surveys for the Open Waste Dumping Landfill (I) (불량쓰레기 매립지에 대한 물리탐사 적용사례 연구(I))

  • 이재영;김학수
    • Journal of Korea Soil Environment Society
    • /
    • v.1 no.1
    • /
    • pp.29-38
    • /
    • 1996
  • Among many geophysical prospecting methods, GPR(Ground Penetration Radar) and electrical resistivity method have been applied to a open waste dumping landfill for measuring of the site area and depth. The surveying was limited to a boarder of the site and inside area because of the field situation. The data of GPR were recorded by 50MHz antenna, and dipole array was used for electrical resistivity survey in the same survey line for the integrated interpretation. The result of GPR clearly indicated the horizontal boarder of site. However, the data of GPR did not have enough to measure the depth of site clearly. The electrical resistivity method may show the effective information by integrated interpreation. These results coincided with results of the boring test. Therefore, a combination of GPR and electrical resistivity is a good method for surveying of suspective open waste dumping landfill area and it's depth.

  • PDF

Geostatistical Integrated Analysis of MASW and CPTu data for Assessment of Soft Ground (연약지반 평가를 위한 MASW탐사와 CPTu 자료의 지구통계학적 복합 분석)

  • Ji, Yoonsoo;Oh, Seokhoon;Im, Eunsang
    • Geophysics and Geophysical Exploration
    • /
    • v.19 no.4
    • /
    • pp.187-199
    • /
    • 2016
  • In order to delineate the soft ground distribution, an integrated geostatistical analysis was performed using the MASW (Multichannel Analysis of Surface Wave) which has the information of overall region and CPTu (Piezo Cone Penetration Test) which provides the direct information of the measuring point of the ground. MASW results were known to have close relationship with the ground stiffness. This correlation was confirmed through the comparison of MASW data obtained from two survey lines to the laboratory test with extracted soil samples. 3D physical property distribution in the study area was acquired by geostatistical integrated analysis with the data of tip resistance ($q_c$) and pore pressure (u) from the CPTu obtained at 6 points within the study area. The integrated analysis was conducted by applying the COSGSIM (Sequential Gaussian Co-Simulation) technology which can carry out the simulation in accordance with the spatial correlation between the MASW results and both tip resistance and pore pressure. Besides the locations of CPTu, borehole investigations were also conducted at two different positions. As a result, the N value of SPT and borehole log could be secured, so these data were used for the analysis of the geotechnical engineering accuracy of the integrated analysis result. For the verification of reliability of the 3D distribution of tip resistance and pore pressure secured through integrated analysis, the geotechnical information gained from the two drilling areas was compared, and the result showed extremely high correlation.