• Title/Summary/Keyword: 복합 금형

Search Result 147, Processing Time 0.028 seconds

Mechanical Properties of Stabilizer Link Using Composite Material and Metal (금속과 복합재료를 이용한 스태빌라이저 링크의 기계적 특성 평가)

  • Woo, Young-Man;Nam, Ki-Woo
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.35 no.8
    • /
    • pp.877-882
    • /
    • 2011
  • Stabilizers are balancing equipment that can reduce the severe rolling of ships, vehicles, and aircraft. We manufactured a stabilizer link using a metal and a composite material with 25% POM-GF. We evaluated the strength of the stabilizer link via tensile, compressive, and ball-stud separation. The standard criteria were satisfied. Of four types of rod, knurled rod has the greatest strength. We improved the shape of the stabilizer-link body by a reanalysis of the injection molding.

Development of Outer Support Ring using Complex Forging Processes (복합단조 공정을 적용한 Outer Support Ring 개발)

  • Ju, Won Hong;Park, Sung-young
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.4
    • /
    • pp.653-659
    • /
    • 2017
  • In this study, the complex forging process of an outer support ring was developed and the prototype was manufactured. The current process, hot forging and MCT machining, has a disadvantage of excessive material removal rates and longer machining hours. To overcome this disadvantage, a general shape is given through hot forging and the precision is achieved through cold forging. The complex forging process was developed with the minimal machining process. Forging analysis was carried out to design a forging process using the commercial program, Deform-3D. The hot and cold forging processes were set up based on the analyzed result. The mold and prototype were manufactured. Hardness, surface roughness, internal defect, the grain low line of the prototype were evaluated. The results showed no particular problems, and there were no problems in mass production. Using complex forging, the material was reduced by approximately 27 % compared to the process using hot forging and MCT machining. In addition, the production speed was improved 2.15 fold compared to that of hot forging and MCT machining. Through this study, a cost-effective process and mold design technology were established, which is expected to have positive effects on other related automotive parts production.

A Study on an Integrated Light Guide Plate (광학시트를 제거한 복합 도광판 설계 연구)

  • Lee, Yun-Mi;Lee, Jun-Ho;Jeon, Eun-Chae
    • Korean Journal of Optics and Photonics
    • /
    • v.21 no.2
    • /
    • pp.53-60
    • /
    • 2010
  • An integrated light guide plate (LGP) was designed for liquid crystal displays (LCD) without using prism and diffuser sheets. The integrated LGP is textured with micro-patterns on both the top and bottom surfaces. The textures effectively substitute for a single prism-sheet and a diffuser sheet in LCD displays without decreasing the brightness and uniformity. A LCD display with our integrated light guide is simulated to give average luminance of 4560 cd/$m^2$, luminance uniformity of 83% horizontal viewing angle $60^{\circ}$ and vertical viewing angle $56^{\circ}$. Therefore an ultra thin (slim) back light unit can be constructed with fewer optical sheets, which reduces the manufacturing cost and so improves price competitiveness.

Fabrication of ACtA/$SiC_w$ composite by squeeze casting (I) (용탕 단조법에 의한 AC4A/Si$C_w$복합재료 제조에 관한 연구 (I))

  • Moon, Kyung-Cheol;Lee, Jun-Hee
    • Korean Journal of Materials Research
    • /
    • v.2 no.6
    • /
    • pp.461-467
    • /
    • 1992
  • A fabrication process for SiC whisker preform reinforced AC4A Al composites is being developed. The Al alloy used as the matrix in this study is AC4A. SiC whisker preform made by Tokai Carbon Co. Ltd. Shizuoka, Japan were used. These consisted of $\beta$-type single crystals 0.1 ~ 10${\mu}$m in diameter and 20~10${\mu}$m in length. The most adequate fabrication condition was that whisker preform was preheated up to 750~80$0^{\circ}C$, set into a mould preheated to ~40$0^{\circ}C$, molten Al alloy heated to ~80$0^{\circ}C$ and applied pressure 75MPa. And Si$C_w$reinforced AC4A composite was advanced above twice than AC4AI/M. Also it was not large effect by pressure at Si$C_w$ 20v/o.

  • PDF

FeO, $TiH_2$, Carbon 원료분말을 이용한 Fe-TiC 나노 복합분말 제조 및 소결

  • An, Gi-Bong;Kim, Ji-Sun
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2011.10a
    • /
    • pp.26-26
    • /
    • 2011
  • Fe계 TiC 합금은 미량의 합금원소를 첨가시켜 경화능, 내식성, 내마모성 성질을 개선한 특수 공구용 재료로서 현재 절삭, 내마모성, 광산, 금형재료 등의 분야에 널리 사용되고 있다. 금속과 세라믹의 복합재료인 초경합금은 비열처리용 공구강으로 WC, TiC 등의 4, 5, 6족 금속탄화물에 Co, Ni, Fe등의 철족이 결합금속으로 소결한 복합재료로 WC-Co계 초경합금이 주종을 이루고 있으나, 전략 소재로서 고가인 Co 원료를 대체하기 위한 재료로서 초경재료의 고경도와 공구강의 경제성 및 가공성의 장점을 이용한 Fe-TiC계 초경합금의 연구가 다양하게 진행되고 있다. 본 연구에서는 Fe기지에 서브마이크론 크기의 미세한 TiC 입자가 균일하게 분산된 Fe-TiC 복합분말을 경제적으로 제조하기 위해 순수한 Fe, Ti 원료분말에 비해 단가가 낮고 미세 분쇄가 용이한 FeO, $TiH_2$ 분말을 고에너지 밀링 후 반응 열처리 시키는 유사 기계화학적 공정을 시도하였다. 조성비 Fe-30wt%TiC 복합분말을 제조하기위해 마이크론(micron) 크기의 FeO, $TiH_2$, C 분말을 사용하였고, 1단계로 FeO와 C을 고에너지 밀링으로 혼합 후 반응시켜 환원시키는 공정과 2단계로 이렇게 환원된 분말과 TiH2를 고에너지 밀링으로 다시 혼합, 분쇄한 후 반응열처리 하는 두 단계 공정을 사용하였다. FeO의 환원 단계에서는 $700{\sim}1,000^{\circ}C$ 온도 범위에서 1시간 유지하였고, 고에너지 밀링 시 밀링시간, 회전속도를 변수로 두고 실험하였다. 환원된 분말은 수평관상로를 이용해 아르곤분위기에서 $1,000{\sim}1300^{\circ}C$까지 1시간 유지하여 반응열처리시켜 Fe-TiC 복합분말을 제조하였다. 준비된 복합분말을 XRD와 FE-SEM, EDS, 입도분석기 (LPSA) 등을 이용해 분말의 형태와 특성, 상, 조성, 입도, 분산도 등을 조사하였다. 제조된 Fe-TiC 나노복합분말을 방전플라즈마소결(SPS) 과 상압소결 실험을 진행하였다. Fe-TiC 복합분말 제조공정의 첫 번째 단계인 FeO의 환원반응은 $800^{\circ}C$이상의 온도에서 Fe로 환원이 진행됨을 확인하였다. 두 번째 단계인 반응열처리공정에서는 $1,000^{\circ}C$ 이상에서 TiC가 형성됨을 XRD 상분석을 통해 확인할 수 있었고, $1,100^{\circ}C$ 이상의 온도에서 반응열처리를 했을 때 XRD 분석결과와 산소 조성 분석 결과로부터 반응의 완결성과 순도에서 최적 온도 조건임을 확인하였다. 온도를 $1,300^{\circ}C$로 증가시킬 경우 반응의 완결성에 큰 변화가 없는 반면 분말입자간의 목형성이 일어나 가소결 되는 것을 FE-SEM을 통해 관찰하였다. 또한 최적조건으로 제조된 Fe-TiC 복합분말의 입도분석과 FE-SEM/EDS 관찰/분석을 시행한 결과 평균 입도 0.6 ${\mu}m$의 미세한 Fe-TiC 복합분말 내에 Fe분말 주변과 내부에 나노크기의 TiC입자가 균일하게 분산되어 존재하는 것을 확인하였다.

  • PDF

Manufacture and performance test of the composite cantilever arm for electrical discharge wire cutting machine (방전 가공기용 복합재료 외팔보의 제작 및 성능평가)

  • 최진호
    • Composites Research
    • /
    • v.13 no.6
    • /
    • pp.39-46
    • /
    • 2000
  • Electrical discharge machining (EDM) cuts metal by discharging electric current across a thin gap between tool and workpiece. Electrical discharge wire cutting, a special form of EDM, uses a continuously moving conductive wire as an electrode, and is widely used for the manufacture of punches, dies and stripper plates. In the wire cutting process, the moving wire is usually supported by cantilever arm and wire guides. As the wire traveling speed has been increased in recent years to improve productivity, the vibration of the cantilever arm occurs, which reduces the positional accuracy of the machine. Therefore, the design and manufacture of the cantilever arm with high dynamic characteristics have become important as the machining speed increases. In this paper, the cantilever arm for guiding the moving wire was designed and manufactured using carbon fiber epoxy composite in order to improve the static and dynamic characteristics. Specimens for the composite cantilever arm were manufactured and tested to investigate the effect of the number of reinforcing plies and length fitted to steel flange on the load capacity. Also, the finite element analysis using layer and contact elements was performed to compare the calculated results with the experimental ones. From the results, the prototype of the composite cantilever arm for the electrical discharge wire cutting machine was manufactured and the static and dynamic characteristics were compared with those of the conventional steel cantilever arm.

  • PDF

Dispersion and property evaluation of nanocomposites by aspect ratio of MWCNT (다중벽 탄소나노튜브 형상비에 따른 나노복합재료 분산 및 물성 평가)

  • Jang, Jung-Hoon;Yi, Jin-Woo;Lee, Won-Oh;Lee, Hak-Gu;Um, Moon-Kwang;Kim, Jin-Bong;Byun, Joon-Hyung
    • Composites Research
    • /
    • v.23 no.3
    • /
    • pp.58-63
    • /
    • 2010
  • Tensile and flexural properties and electrical conductivity of MWCNT/epoxy composites with different aspect ratios of MWCNTs were compared. The MWCNT/epoxy mixtures were prepared by mechanical dispersion methods using a homomixer and a three-roll mill, and then composite samples were fabricated by compression molding process. The fractured surfaces of the samples were observed by SEM in order to evaluate the degree of dispersion of MWCNTs. The addition of MWCNTs into epoxy resin improved its tensile strength by 7.0% while its flexural strength increased slightly as compared with the one without MWCNTs. In the case of MWCNTs having highest aspect ratio, the mechanical properties of the composites were decreased. When the contents of CM-95 MWCNTs were varied, maximum of tensile and flexural strengths occurred at 1wt% and 0.5wt%, respectively. From the higher contents than these, tensile and flexural strengths of the composites decreased. Electrical conductivities of in-plane and thought-the-thickness directions of MWCNT/epoxy composites were measured using a two-point probe method. They increased with the increase of the aspect ratios and concentrations of MWCNTs in the epoxy matrix.

Effects of Molding Condition on Surface Unevenness of GFRP Composites in Compression Molding (GFRP 복합재료의 압축성형에서 표면요철에 미치는 성형조건의 영향)

  • Kim, Hyoung-Seok;Kim, Jin-Woo;Kim, Yong-Jae;Lee, Dong-Gi
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.34 no.11
    • /
    • pp.1649-1657
    • /
    • 2010
  • We have investigated the unexpected phenomena on the surface of molded GFRP composites. The major cause of the unevenness, as a result of which the surface becomes rough, is a shrinking of the matrix in the process of holding pressure and cooling temperature. The higher holding pressure load in a molding process and the lower demolding temperature in an annealing experiment, the better GFRP composites moldings improved its appearance. In addition, by taking the holding pressure and demolding temperature into consideration, we evaluate the process that causes the surface unevenness and the variation in the fiber projection height.

A Study on the Improvement of Bending Characteristics of 3D Printed Thermoplastic Structures Reinforced at the Lateral Surface using Continuous Fiber Reinforced Thermosetting Composites (열경화성 연속섬유 복합재를 이용해 외측 보강된 3D 프린팅 열가소성 복합재 구조물의 굽힘 특성 향상에 대한 연구)

  • Baek, Un-Gyeong;Nam, Gibeop;Roh, Jae-Seung;Park, Sung-Eun;Roh, Jeong-U
    • Composites Research
    • /
    • v.34 no.2
    • /
    • pp.136-142
    • /
    • 2021
  • 3D printing technology has the advantage of easy to make various shapes of products without a mold. However, it has a problem such as mechanical properties vary greatly depending on materials and manufacturing conditions. Thus, the need for research of 3D printing technology on ways to reduce manufacturing cost compared to physical properties is increasing. In this study, a 3D printing thermoplastic structure was fabricated using short fiber carbon fiber reinforced nylon filaments. And a method of improving mechanical properties was proposed by reinforcing the outer surface using pultruded continuous fiber-type carbon fiber or glass fiber-reinforced thermosetting composite material. It was confirmed that the bending properties were improved according to the reinforcing position of the stiffener and the type of fiber in the stiffener.

Simulation of Compression Molding Considering Slip at Interface for Polymeric Composite Sheet (섬유강화 고분자 복합판의 압축성형에 있어서 금형-재료계면의 미끄름을 고려한 유동해석)

  • 장수학;김석호;백남주;김이곤
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.15 no.1
    • /
    • pp.163-168
    • /
    • 1991
  • During Compression molding of polymeric composite materials, the flow characteristics should be obtained. Understanding the flow states may be useful for determination of optimum molding conditions, charge pattern etc. So far, for obtaining the flow analysis, no-slip boundary condition was applied on the mold surface. However, The study under consideration of the slip was conducted by Barone and Caulk. They have introduced the nondimensional parameter which is the ratio of viscous to friction resistance and governs the frictional condition. But the method for determining the parameter could not be proposed. In our work, the parameter which explains the interfacial friction is measured under a variety of molding conditions. Two-dimensional rectangular part and circular hollow disk are simulated with the measured parameter using the finite element method. Effects of the parameter on shapes of flow fronts are also presented.