• Title/Summary/Keyword: 복합항공기

Search Result 344, Processing Time 0.02 seconds

Aircraft Velocity and Altitude Estimation through Time Offset Calculation of KOMPSAT-3 Satellite (KOMPSAT-3 위성의 Time Offset 계산을 통한 항공기 속력 및 고도 추정)

  • Jung, Sejung;Shin, Hyeongil;Kim, Dohoon;Song, Ahram;Lee, Won Hee
    • Korean Journal of Remote Sensing
    • /
    • v.38 no.6_4
    • /
    • pp.1879-1887
    • /
    • 2022
  • In this study, a method of estimating the velocity and altitude of aircrafts photographed in a KOMPSAT-3 satellite was proposed. In the proposed method, parallax effect, which is a time offset between bands due to the photographing method of the KOMPSAT-3 satellite, the structure of the sensor, and the movement of the satellite's orbit, was calculated, and in this process, trucks running on the highway were used. In addition, the actual direction and the direction by parallax effect of the aircraft were calculated using the coordinates of the aircraft in the image, and the attitude information of the KOMPSAT-3 satellite was calculated using metadata to estimate the velocity and altitude of the aircraft. The estimated value through the proposed method was compared with the actual value, automatic dependent surveillance-broadcast (ADS-B), and the error rate was calculated here. As a result, it was confirmed that the velocity and altitude error rate of large aircraft (I1, I3, S2) were lower than that of light aircraft (I2, S2), and the estimated velocity and altitude were relatively high in large aircraft using the proposed method.

A Study on Failure Strength of the Hybrid Composite Joint (복합재 하이브리드 조인트의 파손강도에 관한 연구)

  • Lee, Young-Hwan;Park, Jae-Hyun;Ahn, Jeoung-Hee;Choi, Jin-Ho;Kweon, Jin-Hwe
    • Composites Research
    • /
    • v.22 no.2
    • /
    • pp.7-13
    • /
    • 2009
  • With the wide application of fiber-reinforced composite material in aero-structures and mechanical parts, the design of composite joint have become a very important research area because they are often the weakest areas in composite structures. In this paper, the failure strengths of the hybrid composite joints which were composed of a combination of an adhesive joint and a mechanical joint were evaluated and predicted. The 10 hybrid joint specimens which have different w/d, e/d and adherend thickness were manufactured and tested. The damage zone theory and the failure area index method were used for the failure prediction of the adhesive joint and the mechanical joint, respectively and the hybrid joints were assumed to be failures if either of the two failure criteria was satisfied. From the results of experiments and analyses, the failure strengths of the hybrid joints could be predicted to within 25.5%.

High Velocity Impact Analysis of Kevlar29/Phenolic Composite Plate (케블라 복합재 평판의 고속충돌 특성 수치해석)

  • Ahn, Jeoung-Hee;Kweon, Jin-Hwe;Choi, Jin-Ho
    • Composites Research
    • /
    • v.22 no.2
    • /
    • pp.18-23
    • /
    • 2009
  • Failure of Kevlar29/Phenolic composite plate under high velocity impact of FSP(Fragment Simulation Projectile) is investigated using a non-linear explicit finite element code, LS-DYNA. Composite laminate and impactor are idealized by solid element and interface between laminas are modeled by tied-break element in LS-DYNA. Interaction between impactor and laminate is simulated face-to-face eroding contact algorithm. When the stress level meets a failure criteria, the layer in the element is eroded. Numerical results are verified by existing test results.

쌍방복합재 항공기 개발의의

  • Choe, Min-Su
    • Aerospace Industry
    • /
    • v.50
    • /
    • pp.23-27
    • /
    • 1997
  • 쌍발복합재 항공기가 지는 3월 29일 마침내 땅을 박차고 올랐다. 지난 93년부터 개발이 시작된 쌍발복합재 항공기는 국내최초로 전 기체구조물을 복합재로 제작되었으며 개발과정에서 많은 시행착오와 시련을 겪기도 하였으나 마침내 처녀비행에 성공한 것이다. 본 고에서는 그동안의 개발과정과 의의를 개발실무자로부터 들어보기로 한다.

  • PDF

우리나라 항공기 산업의 발전과제와 대책

  • Lee, Gi-Sang;Lee, Mu-Yeong
    • The Journal of Aerospace Industry
    • /
    • s.68
    • /
    • pp.1-23
    • /
    • 2006
  • 항공기산업은 고부가가치, 높은 기술파급효과 등의 경제적 요인 이외에도 국방 등의 전략적 요구 및 국가이미지의 대내외적 제고 등 요인을 동시에 갖고 있는 첨단의 전략산업일뿐 아니라 개발성과가 불확실하고, 수요의 독점성과 기술의 복합성, 자본 및 경험 집약성 등의 요인으로 인해 육성하기 어려운 산업이다. 우리나라에서의 항공기산업은 자동차, 철강, 반도체 등 세계적인 선도 산업에 비해 아직은 그 산업의 성과가 충분치 못한 실정이다. 그 이유로는 수요의 영세성과 불연속성, 고립된 산업 구조 및 그로 인한 낮은 산업파급효과와 낮은 부가가치구조, 취약한 부품산업 등의 여러요인이 거론되고 있다. 그러나 이러한 수요와 공급 및 기술과 산업구조 등의 여러측면을 조정하고 통합하는 정부의 역할과 기능이 더욱 중요한 요인이라 하겠다. 공군력 증강과 장기 경제발전을 위해 우리나라 항공기산업의 현재 수준을 한 단계 도약시키기 위해서는 우선 산업의 명확한 비전과 발전전략의 제시와 적절한 사업의 선정의 효과적인 추진이 중요할 것이다. 적절한 사업의 하나로는 국내의 축적된 기술과 생산기반을 활용하여 우리나라가 주도적으로 개발/생산할 수 있는 적절하게 통제된 규모의 중급항공기 개발사업을 들 수 있겠다. 이를 위해서는 체계적이고도 통합된 정부의 역할이 가장 긴요하다. 특히 산업이 가지고 있는 공공성, 전략성 및 복합성 등의 특성을 감안할 때, 우리나라 항공기산업의 성공적인 발전을 통한 장기적인 공군력 증대에의 기여를 위해서는 수요, 기술, 생산 및 관리를 효과적으로 조정하고 통괄하되, 책임소재가 명확하게 식별될 수 있도록 수요부처 중심의 추진주체로서의 정부의 통합된 기능과 역할이 특히 강조된다 하겠다.

  • PDF

Investigation on Strength Recovery after Repairing Impact Damaged Aircraft Composite Laminate (항공기 복합재 라미네이트의 충격 손상 부위 유지 보수 후 강도 복원 평가)

  • Kong, Chang-Duk;Park, Hyun-Bum;Lee, Kyung-Sun;Shin, Sang-Jun
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.38 no.9
    • /
    • pp.862-868
    • /
    • 2010
  • Development of a small scale aircraft has been carried out for the BASA(Bilateral Aviation Safety Agreement) program in Korea. This aircraft adopted all the composite structures for environmental friendly by low fuel consumption due to its lightness behavior. However the composite structure has s disadvantage which is very weak against impact due to foreign object damages. Therefore the aim of this study is focusing on the damage evaluation and repair techniques of the aircraft composite structure. The damages of composite laminates including the carbon/epoxy UD laminate and the carbon/epoxy fabric face sheets-honeycomb core sandwich laminate were simulated by a drop weight type impact test equipment and the damaged specimen were repaired using the external patch repair method after removing damaged area. The compressive strength test and analysis results after repairing the impact damaged specimens were compared with the compressive strength test and analysis results of undamaged specimens and impact damaged specimens. Finally, the strength recovery capability by repairing were investigated.

A Study on the Aileron Reversal Characteristics of CAS Composite Aircraft Wings (CAS 복합재료 항공기 날개의 에일러론 역전 특성 연구)

  • Song, Oh-Seop;Kim, Keun-Taek
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.37 no.12
    • /
    • pp.1192-1200
    • /
    • 2009
  • This paper deals with an analytical study on the aileron reversal characteristics of anisotropic composite aircraft wings modelled as thin-walled beam and having bending-torsion structural couplings caused by Circumferentially Asymmetric Stiffness layup scheme. For a study on the aileron reversal of CAS composite wings, it is essential to consider the following effects such as warping restraint, transverse shear flexibility, bending-twist structural coupling, wing aspect ratio, ratio of span-wise and chord-wise length of aileron to wing, and sweep angle, etc. The results on the aileron reversal could have a significant role in more efficient designs of thin-walled composite wing aircraft for which this aeroelastic instability is one of the most critical ones.

A Study on the Autofrettage Analysis in Single and Compound Cylinders (단일 및 복합실린더에서 자긴가공 해석에 관한 연구)

  • Shim, Woo-Sung;Kim, Jae-Hoon;Lee, Young-Shin;Cha, Ki-Up;Hong, Suk-Kyun
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.12 no.4
    • /
    • pp.7-15
    • /
    • 2008
  • In manufacturing aircraft, safety and lightness of structure are important factors. Utilizing autofrettage technique, these benefits can be obtained. This technique is most frequently applied to a single cylinder. However, the Bauschinger effect reduces the benefits of autofrettage process Therefore, there is increasing interest in the use of compound cylinder that combine shrink fit and autofrettage. In this paper, single and compound cylinders that has same geometry were considered. It was found that compound cylinder which was autofrettaged has lower tangential hoop stress and plastic strain than single cylinder at bore. This means a reduction in the impact of the Bauschinger effect after shrink-fitting which produces the beneficial bore hoop stress.