• Title/Summary/Keyword: 복합철도교량

Search Result 15, Processing Time 0.028 seconds

The Methodology of Determination of the Allotment Ratio in Maintenance Cost on the Multi-Purpose Steel Bridge (복합이용 강교량의 유지관리비 분담비율 결정을 위한 방법)

  • Kim, Kyoung Nam;Lee, Seong Haeng;Jung, Kyoung Sup
    • Journal of Korean Society of Steel Construction
    • /
    • v.18 no.6
    • /
    • pp.747-758
    • /
    • 2006
  • With the growth of economy, the esthetic values of bridges become significant points in the decision process of a type of new bridges. So, it is common that a long-span bridge or a multi-purpose bridge are selected as the type of new bridges. Also, the economic growth derives increase in traffic and then the increased traffic derives multi purpose bridges from the decision process of bridge types. In the multi-purpose bridges with private fund, the construction cost is simply alloted to several organizations according to the percentage of participation and usage. But the allotment of the maintenance cost is not simple. Because the loads and safety factors in design are different between the criterion of design of highway bridges and that of railway bridges. In this study, we verify the possible problems in case of allotment method of maintenance cost in foreign examples as well as domestic example. As one of the method of determination of allotment ratio in maintenance cost, the method based on the stress of structural analysis is presented and it can be an example in the similar problem later.

A Simple and Accurate Analysis of Two Dimensional Concrete Slab for a Railroad Bridge by the Composite Laminates Plate Theory (복합적층판 이론에 의한 2차원 콘크리트 슬래브 철도교량의 정확하고 간단한 해석)

  • Han, Bong-Koo;Bang, Bae-San
    • Journal of the Korean Society for Advanced Composite Structures
    • /
    • v.2 no.2
    • /
    • pp.20-25
    • /
    • 2011
  • In this paper, two dimensional concrete slabs for a railroad bridge were analyzed by the specially orthotropic laminates theory. Both the geometrical and material property of the cross section of the slab was considered symmetrically with respect to the neutral surface so that the bending extension coupling stiffness, $B_{ij}$ = 0, and $D_{16}=D_{26}=0$ Bridge deck behaves as specially orthotropic plates. In general, the analytical solution for such complex systems is very difficult to obtain. Thus, finite difference method was used for analysis of the problem. In this paper, the finite difference method and the beam theory were used for analysis.

An Estimate of Ballast Track Condition on Dynamic Behavior of Railway Bridge (철도교량의 동적거동 특성을 고려한 자갈도상궤도의 상태추정에 관한 연구)

  • Kweon, Oh-Soon;Choi, Jung-Youl;Kang, Myoung-Seok;Lee, Hee-Up;Park, Yong-Gul
    • Proceedings of the KSR Conference
    • /
    • 2007.11a
    • /
    • pp.480-493
    • /
    • 2007
  • Many railway-advanced countries are using the various types of track to reduce the track maintenance and repair cost according to the improvement of velocity. It spends on much maintenance and repair cost for ballast track due to abrasion of ballast, track irregularity and unisotropical ballast-support stiffness. The ballast track on railway bridge is accelerating the deterioration of ballast according to interaction of railway bridge and track. As continuing the deterioration, it is caused dynamic loads. Due to these effects, it increases negative loads of track and bridge. However, when designing the railway bridge, the effect of ballast track was applicate only dead load, so elastic behavior effect of ballast track is not influenced. Therefore, this paper presumes the stiffness of ballast track on railway bridge considering dynamic behavior of railway bridge, it was evaluated that effect on dynamic behaviors of railway bridge according to ballast track stiffness.

  • PDF

Static and Free Vibration Analyses of Hybrid Girders by the Equivalent Beam Theory (등가보 이론을 이용한 복합 거더의 정적 및 자유진동 해석)

  • Choi, In-Sik;Ye, In-Ho
    • Journal of the Korean Society for Railway
    • /
    • v.10 no.5
    • /
    • pp.600-606
    • /
    • 2007
  • 3D finite element analyses of a corrugated steel web girder and a steel truss web girder are conducted to investigate the static and dynamic behaviour of the hybrid girders. And the analyses results are compared with those by the equivalent beam theory. The equivalent theory is a theory that all section properties of a truss structure are replaced by section properties of a beam including a shear coefficient. When applying the equivalent beam theory, the shear coefficient of the corrugated steel web girder is estimated as the area ratio of flange section to web section and that of the steel truss web girder is calculated by the equation proposed by Abdel. Static deflections and natural frequencies by 3D finite element analyses and those by the equivalent beam theory are in good agreement.

Joint Displacement Resistance Evaluation of Waterproofing Material in Railroad Bridge Deck (철도교량상판 방수재료 선정을 위한 균열거동저항 성능평가)

  • Bae, Young-Min;Oh, Dong-Cheon;Park, Yong-Gul
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.21 no.11
    • /
    • pp.683-692
    • /
    • 2020
  • A joint displacement resistance evaluation method for selecting waterproofing materials in railway bridge decks is proposed. The displacement range for an evaluation is determined by finite element method (FEM) analysis of a load case based on an existing high-speed PSC Girder Box railroad bridge structure. The FEM analysis results were used to calculate the minimum joint displacement range to be applied during testing (approximately 1.5 mm). For the evaluation, four commonly used waterproofing membrane types, cementitious slurry coating (CSC), polyurethane coating system (PCS), self-adhesive asphalt sheet (SAS), and composite asphalt sheet (CAS), were tested, with five specimens of each membrane type. The joint displacement width range conditions, including the minimum displacement range obtained from FEM analysis, were set to be the incrementing interval, from 1.5, 3.0, 4.5, and 6.0 mm. The proposal for the evaluation criteria and the specimen test results demonstrated how the evaluation method is important for the sustainability of high-speed railway bridges.

Effect of Cable Tension Changes on Track Irregularity of Railway Ballasted Track on Railway Steel Composite Bridge (케이블 장력변화가 강철도 복합교량 상 자갈궤도의 궤도틀림에 미치는 영향)

  • Jung-Youl Choi;Soo-Jae Lee
    • The Journal of the Convergence on Culture Technology
    • /
    • v.9 no.4
    • /
    • pp.633-638
    • /
    • 2023
  • In this study, the effect of the change in cable tension on the track irregularity of railway ballasted track on a railway steel composite bridge was analyzed. As a result of comparing design and analysis results for cable tension, a difference of less than 3% was found, and analysis modeling was analyzed to reflect the design conditions well. In addition, the adequacy of the analysis modeling was demonstrated by comparing the field measurement results with the analysed cable tension. By considering the change in cable tension as a variable, the track irregularity of the railway steel composite bridge was analyzed. As a result of the analysis, it was analyzed that the total and one-sided cable tension change had a direct effect on the vertical irregularity among the track irregularity items. In addition, it was found that the change in track irregularity occurred in the section close to the cable position. It was analyzed that the change in cable tension had a more direct effect on track irregularity that had a direct correlation with the vertical direction rather than the lateral direction.

Evaluation of Static Strength of Mixed Stud Shear Connection in Double Composite Bridges (이중합성 교량의 복합스터드 전단연결부의 정적강도 평가)

  • Kim, Hyun Ho;Shim, Chang Su;Yun, Kwang Jung;Lee, Pil Goo
    • Journal of Korean Society of Steel Construction
    • /
    • v.17 no.5 s.78
    • /
    • pp.549-559
    • /
    • 2005
  • A railway bridge with a double composite section is proposed to enhance the structural performance of existing two-girder bridges because the governing design parameter of railway bridges is the flexural stiffness. The concrete deck in negative moment regions is neglected in the design of continuous composite bridges assuming the concrete slab has no resistance to tension. Therefore, the flexural stiffness of the composite section in the negative moment region is reduced resulting in the increase of the depth of the steel section. In order to resolve this disadvantage, several methods are suggested and the double composite section is one of the excellent solutions for extending the span length and increasing the flexural stiffness. In this study, push-out tests on lying studs and mixed stud shear connection with lying and vertical studs were performed to investigate the behavior of the shear connection in the double composite section. Static strength of the shear connection was evaluated through the test results and numerical analyses.

Analysis of Design Parameters for Earthwork/Bridge Transition Structure for Ultra-High Speed Running (초고속 주행시 교량/토공 접속부 보강방안의 설계변수 분석)

  • Lee, Il-Wha;Lee, Sung-Jin;Lee, Su-Hyung;Lee, Kang-Myung
    • Journal of the Korean Society for Railway
    • /
    • v.18 no.2
    • /
    • pp.117-126
    • /
    • 2015
  • The development of railway roadbed for 600km/h train speed level is very difficult because unpredictable static and dynamic interaction occurs between the ultra-high speed train and the infrastructure. Especially, an earthwork-bridge transition zone is a section in which influential factors react, such as bearing capacity, compression, settlement, drainage, and track irregularity; these interactions can include complicated dynamic interaction. Therefore, if static and dynamic stability are secured in transition zones, it is possible to develop roadbeds for ultra-high speed railways. In the present paper, design parameters for transition reinforcement applied to present railway design criteria are analytically examined for ultra-high speed usage on a preferential basis. Design parameters are the presence of reinforcing materials, geometric shape, stiffness of materials, and so on. Analysis is focused on the deformation response of the track and running stability at ultra-high speed.

Advanced Railway Vehicle Technology using Smart Materials (지능재료를 이용한 차세대 철도차량기술)

  • 김재환;강부병;김형진;정홍채;최성규
    • Proceedings of the KSR Conference
    • /
    • 2003.05a
    • /
    • pp.712-717
    • /
    • 2003
  • 지능 재료를 이용한 디바이스는 자연계에 존재하는 생명체와 같이 내.외부 환경 변화에 대응하여 스스로 변하는 능동적 기능을 갖고 있기 때문에 시스템 성능의 극대화 및 유지비용의 최소화를 가져오게 된다. 이러한 지능재료 기술은 지난 10여년 전부터 연구되었는데 대표적인 웅용을 보면, 산업, 항공, 교통, 운송 분야의 능동 소음 및 반능동 진동제어; 복합 재료 손상위치 탐지시스템, 손상구조 건전성 평가시스템, 교량, 저장탱크, 건물, 유조선, 대형 구조물의 건전성 평가 시스템; 초정밀 직진 안내기구, 나노 스테이지, 절삭오차 보정용 엑츄에이터, 초음파 회전모터, 지능유압 서보밸브, 변형 거울 등의 모터/엑츄에이터; 자동차 엔진 성능제어, 흡배기구 압력측정, 가속도 센서, 자이로센서, 에어백 센서, 타이어 센서 등의 지능 MEMS/NEMS 센서; electronic article 정찰, 도서태그, 비접촉 항공 운송물 분류 및 보안시스템, 전자 운전자 식별시스템, 광섬유 건물 보안 시스템, 지능 신경망 형상 인식 시스템 등의 보안 시스템; 지능항공기 구조물, 인공위성안테나, 헬리콥터 회전익 등의 형상제어가 있다. 본 논문에서는 지능재료 기술을 정리하고 차세대 철도차량 기술에 지금까지 적용한 예를 소개하며 향후 적용할 수 있는 분야들을 가능성 및 실용성 면에서 소개하고자 한다.

  • PDF

Science Technology - 세계 1등 기술 10년간 한국 먹여 살린다

  • Kim, Hyeong-Ja
    • TTA Journal
    • /
    • s.144
    • /
    • pp.18-19
    • /
    • 2012
  • 최근 지식경제부 산하 산업기술연구회가 앞으로 10년간 한국을 먹여 살릴 최고 수준의 기술 14가지를 발표했다. 산업기술연구회 산하 7개 출연연구기관은 지난해부터 매년 '세계 1등 연구과제'를 지정받아 세계 최고 수준의 성과를 내놓고 있다. 이 가운데 세계 1위를 달리고 있는 기술은 한국생산기술연구원의 '에코 알루미늄 에코 마그네슘'과 '해조류 셀룰로오스 등을 이용한 연료 생산 기술', 한국전자통신연구원의 '100배 빠른 광인터넷 기술', 한국건설기술연구원의 '세상에서 가장 긴 콘크리트 교량 기술', 한국철도기술연구원의 '콘크리트 발열 촉진 양생 기술'을 비롯해 '저심도 도시철도 시스템 기술'과 초경량 유리섬유 복합소재 전동차 대차 프레임', 한국화학연구원의 '하이브리드 나노세공체 응용 연구' 등 8가지이다. 이 중 몇 가지 기술을 살펴보자.

  • PDF