• Title/Summary/Keyword: 복합제어기법

Search Result 150, Processing Time 0.025 seconds

Vibration Reduction of Composite Helicopter Blades using Active Twist Control Concept (능동 비틀림 제어기법을 이용한 복합재료 로터 블레이드의 진동 억제)

  • Pawar, Prashant M.;You, Young-Hyun;Jung, Sung-Nam
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.37 no.2
    • /
    • pp.139-146
    • /
    • 2009
  • In this study, an assessment is made for the helicopter vibration reduction of composite rotor blades using an active twist control concept. The piezoceramic shear actuation mechanism along with elastic couplings of composite blades is used for vibration reduction. The rotor blades are modeled as composite box-beams with actuator layers bonded on the outer surfaces of the thin-walled section. The governing equations of motion for helicopter blades are obtained using Hamilton's principle. A time domain unsteady aerodynamic theory with free wake model is used to obtain the airloads. Various rotor configurations with different elastic couplings with appropriate actuator placement are used to investigate the hub vibration characteristics. Numerical results show that a substantial reduction of $N_b$/rev hub vibration can be achieved using the optimal control algorithm.

Development of Power Management Strategies for a Compound Hybrid Excavator (복합형 하이브리드 굴삭기를 위한 동력전달계 제어기법 연구)

  • Kim, Hak-Gu;Choi, Jae-Woong;Yoo, Seung-Jin;Yi, Kyoung-Su
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.35 no.12
    • /
    • pp.1537-1542
    • /
    • 2011
  • This paper presents the power management strategies for a compound hybrid excavator. The compound hybrid excavator has been replaced the hydraulic swing motor to the electric swing motor. This excavator requires a proper control algorithm to regulate the energy flow between the mechanical coupling and the electric devices. The controller should improve fuel economy and maintain the super capacitor voltage within a proper range. A thermostat controller and ECMS controller are designed such that these objectives can be achieved. The thermostat controller regulates the power of the engine-assist motor on the basis of the super capacitor voltage, and the ECMS controller determines it using the real-time fuel minimization strategy based on the concept of equivalent fuel. Simulation results showed that by using the hybrid excavator, the fuel economy becomes about 20% higher than that obtained using the conventional excavator and that the ECMS controller outperforms the thermostat controller.

The Performance Improvement of an Efficient Usage Parameter Control Algorithm in ATM Networks (ATM망에서의 효율적인 UPC 알고리즘의 성능 개선)

  • Park, Sung-Kon
    • The Transactions of the Korea Information Processing Society
    • /
    • v.4 no.12
    • /
    • pp.3150-3158
    • /
    • 1997
  • In the ATM networks, there are two method in traffic control as schemes to improve the quality of service; one is the reactive control after congestion and the other is the preventive control before congestion. The preventive control include the CAC(Connection Admission Control), the UPC(Usage Parameter Control), the NPC(Network Parameter Control) and the PC(Priority co ntrol). In this paper, we propose an efficient UPC algorithm that has a complex structure using the Jumping window algorithm within the Leaky Bucket algorithm. The proposed algorithm controls peak hit rate by the Leaky Bucket algorithm, then it does the traffic control to evaluate by the Jumping Window whether violates mean bit rate or not. As we assume On/Off traffic source model, our simulation results showed cell loss rate less than the pre-existential Leaky Bucket algorithm method, and it could decrease the demanded Bucket size.

  • PDF

Design of Storage-based Stormwater Contol Facilities for Preserving Flow Druation Curve (유황곡선 보전을 위한 저류형 강우유출수 제어설비 설계)

  • Choi, Chi-Hyun;Kim, Ho-Sung;Kim, Sang-Dan
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2010.05a
    • /
    • pp.1124-1128
    • /
    • 2010
  • 본 연구는 도시 개발이전의 유황곡선과 개발이후의 유황곡선을 일치시키기 위하여 강우유출수 제어설비의 크기 결정과 관련된 복합 설계기법을 제안하는데 있다. 우선 CN값을 산출 및 보정한 후, IETD에 따라 분할된 강우사상에 NRCS-CN 방법을 적용하여 직접유출량과 침투량을 산정한다. 직접유출량과 침투량의 장기적인 통계치는 개발이전, 개발이후, 개발이후 유수지 설계, 그리고 개발이후 제안된 복합설계의 경우에 대하여 각각 분석된다. 개발이전의 직접유출량과 침투량을 재현하기 위해서 유전자 알고리즘을 적용하여 유수지 및 저류지의 크기를 추정한다. 분석결과 복합설계 강우유출수 제어설비를 적용하였을 때 개발이전의 지표면 유출수와 침투수의 평균을 잘 재현하였고, 개발이전의 유황곡선이 개선될 여지가 충분히 있음을 확인하였다.

  • PDF

Multiple-Model Probabilistic Design for Centralized Repetitive Controllers of Multiple Systems (다물체시스템의 중앙집중 연속학습제어 복수모형 확률설계기법)

  • Lee, Soo-Cheol
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.16 no.4
    • /
    • pp.99-105
    • /
    • 2011
  • This paper presents a method to design a centralized repetitive controller that is robust to variations in the multiple system parameters. The uncertain parameters are specified probabilistically by their probability distribution functions. Instead of working with the distribution functions directly, the centralized repetitive controller is designed from a set of models that are generated from the specified probability functions. With this multiple-model design approach, any number of uncertain parameters that follow any type of distribution functions can be treated. Furthermore, the controller is derived by minimizing a frequency-domain based cost function that produces monotonic convergence of the tracking error as a function of repetition number. Numerical illustrations show how the proposed multiple-model design method produces a repetitive controller that is significantly more robust than an optimal repetitive controller designed from a single nominal model of the multiple system.

Active and Passive Suppression of Composite Panel Flutter Using Piezoceramics with Shunt Circuits (션트회로에 연결된 압전세라믹을 이용한 복합재료 패널 플리터의 능동 및 수동 제어)

  • 문성환;김승조
    • Composites Research
    • /
    • v.13 no.5
    • /
    • pp.50-59
    • /
    • 2000
  • In this paper, two methods to suppress flutter of the composite panel are examined. First, in the active control method, a controller based on the linear optimal control theory is designed and control input voltage is applied on the actuators and a PZT is used as actuator. Second, a new technique, passive suppression scheme, is suggested for suppression of the nonlinear panel flutter. In the passive suppression scheme, a shunt circuit which consists of inductor-resistor is used to increase damping of the system and as a result the flutter can be attenuated. A passive damping technology, which is believed to be more robust suppression system in practical operation, requires very little or no electrical power and additional apparatuses such as sensor system and controller are not needed. To achieve the great actuating force/damping effect, the optimal shape and location of the actuators are determined by using genetic algorithms. The governing equations are derived by using extended Hamilton's principle. They are based on the nonlinear von Karman strain-displacement relationship for the panel structure and quasi-steady first-order piston theory for the supersonic airflow. The discretized finite element equations are obtained by using 4-node conforming plate element. A modal reduction is performed to the finite element equations in order to suppress the panel flutter effectively and nonlinear-coupled modal equations are obtained. Numerical suppression results, which are based on the reduced nonlinear modal equations, are presented in time domain by using Newmark nonlinear time integration method.

  • PDF

Development of the Multi-Propeller based Attitude Control Method for VTOL type Compound Aircraft (VTOL 타입의 복합형 비행체에 적용가능한 다수 프로펠러 기반 자세제어기법의 개발)

  • Seung, Myeonghun;Han, Sanghyuck;Kim, Jongchul;Gong, Hyeon Cheol
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.45 no.6
    • /
    • pp.455-462
    • /
    • 2017
  • In recent decades, many researchers have been struggling to developing the compound aircraft that is capable high speed and VTOL flight. And in recent years, multi-copters are very popular because of having advantages of VTOL and easy handling, but they are lack of doing long-range mission. Therefore, we presents simple aircraft architecture which is equipped fixed wing, multi propellers and no control surfaces. In this paper, we designed the attitude control for the compound aircraft prototype and measured the attitude control performance with flight test for validating prototype's performance. We analysed the attitude control test result comparing with similar size of a fixed wing aircraft. The performance was almost same as fixed wing aircraft.

A Study on the IoT Network Traffic Shaping Scheme (IoT 네트워크의 트래픽 쉐이핑 기법 연구)

  • Changwon Choi
    • Journal of Internet of Things and Convergence
    • /
    • v.9 no.6
    • /
    • pp.75-81
    • /
    • 2023
  • This study propose the traffic shaping scheme on IoT Network. The proposed scheme can be operated on the gateway which called sink node and control the IoT traffic with considering the traffic type(real-time based or non real-time based). It is proved that the proposed scheme shows a efficient and compatible result by the numerical analysis and the simulation on the proposed model. And the efficient of the proposed scheme by the numerical analysis has a approximate result of the simulation.

Bond Graph Modeling and LQG/LTR Controller Design of Magnetically Levitation Systems (자기부상 시스템의 본드선도 모델링 및 LQG/LTR 제어기 설계)

  • 김종식;박전수
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.15 no.5
    • /
    • pp.1620-1634
    • /
    • 1991
  • 본 연구에서는 전기/자기 및 기계적 요소들이 복합되어 이루어진 자기부상 시 스템의 설현을 위한 기초단계로서 제어동역학(controlled dynamics) 측면에 입각한 모 델식을 본드선도 기법을 이용하여 보다 조직적으로 유도한다. 우선, 자속흐름 확장 및 자속 유출량을 고려하여 부상 시스템을 모델링하고 차량/레일 및 2차 현가(second ary suspension)장치를 포함한 자기부상 시스템을 모델링한다. 다음, 지지 및 안내 방향의 동역학을 동시에 고려한 2차원 자기부상 시스템을 본드선도의 다접점 필드(mu- ltiport field) 개념을 이용하여 모델링한다. 끝으로, 본드선도 기법으로 모델링된 2차원 자기부상 시스템의 안정도와 성능을 향상시키기 위하여 LOG/LTR(linear quadra- tic Gaussian control with loop transfer recovery) 제어시스템을 설계한다. LQG/ LTR 제어방법은 Doyle과 Stein에 의해 인성(stability-robustness) 문제와 주파수역 성능을 설계시에 직접 고려할 수 있는 강력한 선형 다변수 제어시스템 설곕방법으로 현재 널리 사용되고 있다.