• Title/Summary/Keyword: 복합전파흡수체

Search Result 46, Processing Time 0.032 seconds

Dielectric Characteristics of the Polymers Containing Nano-size Conductive Carbon Black Powders (전도성 나노 카본 블랙을 함유한 고분자 재료의 유전특성)

  • 진우석;이대길
    • Composites Research
    • /
    • v.17 no.5
    • /
    • pp.68-77
    • /
    • 2004
  • The electromagnetic (EM) absorption or shielding characteristics of a material is an important issue not only for military purpose but also for commercial purposes such as radar, electric or telecommunication devices. In order to design the effective electromagnetic wave absorber, the electromagnetic characteristics of the constituents of the material should be available in target frequency band. Also, it must be possible to predict the electromagnetic properties of absorbers with respect to the content of lossy ingredients. In this study, the dielectric properties of unsaturated polyester resins containing nano-size conductive carbon black powder were measured with a free space method in the X-band frequency range and analyzed with respect to the content of carbon black. Finally, the method for estimating the dielectric properties of polymeric resin containing conductive carbon black with respect to the EM frequency was developed and verified.

Microwave Absorber Prepared by Using the Wasted Mn-Zn Ferrite and the Cement (Mn-Zn ferrite 廢棄物과 시멘트를 이용한 電波吸收體)

  • 조완식;김종오
    • Resources Recycling
    • /
    • v.9 no.6
    • /
    • pp.31-35
    • /
    • 2000
  • The complex permeability, the complex permittivity and the reflection loss are investigated in the composite microwave absorbers which are mixed with the wasted Mn-Zn ferrite and the industrial cement. The cement has larger the complex permittivity than that of the rubber. The complex permittivity is decreasing with the increment of the mixing ratio of Mn-Zn ferrite to cement (F/C in weight) and the complex permeability is increasing with the increment of F/C. The maximum reflection loss is above -40 dB at all samples. The matching frequency is in the range of 1.3 GHz to 2.9 GHz and is decreasing with the increment of F/C from 1 to 3. The matching thickness is increasing with the increment of F/C. The wasted Mn-Zn ferrite and the cement is very useful material for the composite microwave absorber.

  • PDF

The Matching Condition Design of Three Kinds of Ferrite/Rubber Composite Microwave Absorber according to the Constitutional Rate (조성비에 따른 3종 페라이트/고무 복합형 전파흡수체의 정합조건 설계)

  • 유영준;양윤석;전홍배;김철한;김한근;사공건
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1999.05a
    • /
    • pp.247-250
    • /
    • 1999
  • In this study, three kinds of Mn-Zn ferrite/Ni-Zn ferrite/$Ni_2Y$ ferroxplana prepared by the coprecipitation method was compounded with silicon rubber, and thereafter made ring-type specimens with various compositional ratio. The material constant of ferrite/rubber composite absorbers was obtaibed by the 2-port method. The material constants of the ferrite/rubber composite absorber with various compositional ratio of three kinds of ferrite were used to design the matching frequency and thickness with the impedance matching map. We were able to predict the matching condition from the design method.

  • PDF

Evaluation of Applicability of Circuit-analog Radar Absorbing Structures for High Temperature in 350℃ and Hot-wet Environment (고온용 Circuit-analog 전파흡수구조의 350℃ 및 열 수분 환경에서의 적용성 평가)

  • Min-Su Jang;Ho-Beom Kim;Heon-Suk Hong
    • Composites Research
    • /
    • v.36 no.5
    • /
    • pp.335-341
    • /
    • 2023
  • We proposed a high-temperature circuit-analog radar absorbing structures (CA-RAS), and evaluated radar absorption performance and tensile properties in 350℃ and a hot-wet environment. The CA-RAS was implemented with a glass/cyanate ester composites and a square resistive pattern layer, and reflection loss was measured by 350℃ and after exposure of hot-wet condition using free space measurement. And the tensile strength at 350℃ and after exposure of hot-wet condition was measured according to the ASTM D638. The proposed CA-RAS showed a 4 GHz of -dB bandwidth and -20 dB of a peak value at 350℃. In addition, there was no deterioration in absorption performance after exposure to a hot-wet condition. The tensile strength value of more than 95% compared to the strength of the glass/cyanate ester composite was confirmed at 350℃ and after exposure of hot-wet condition. Through this, the applicability of CA-RAS proposed in this study was confirmed as a load bearing structure for stealth weapon exposed to high temperature and hot-wet environment.

Design and Performance Evaluation of Two-Layered Microwave Absorbers(Dielectric/Magnetic) for Wide Oblique Incidence Angles Used for ITS (ITS용 2층형 전파 흡수체(유전체/자성체) 설계 및 경사 입사 흡수 특성 해석)

  • Kim, Jae-Woong;Kim, Sung-Soo
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.18 no.11
    • /
    • pp.1217-1223
    • /
    • 2007
  • Advanced microwave absorbers for wide oblique incidence angles are required in many applications including wireless communication or vehicle identification in ITS(Intelligent Transport System) where 5.8 GHz DSRC(Dedicated Short Range Communication) system is applied. In this study, two-layered microwave absorber(with a laminate structure of dielectric/magnetic composites) has been designed for the achievement of low reflection coefficient over wide incidence angles at 5.8 GHz. Iron flake particles are used as the filler in the absorbing layer, and the magnetic composite sheet exhibits high magnetic loss due to ferromagnetic resonance in gigahertz frequencies. The surface layer of low dielectric constant containing small amount of carbon black is used as the impedance transformer. On the basis of transmission line theory, the reflection loss has been calculated for the two-layer structure with variation of incident angles for both TE(Transverse Electric) and TM(Transverse Magnetic) polarizations. At the optimum thickness of the composite layers, a low value of reflection loss(less than -10 dB) has been predicted for wide incidence angles up to $55^{\circ}$ which is in good agreement with the measured value determined by free-space measurement.

Microwave Absorption Properties of Ferrite/Rubber Composite Microwave Absorber mixed Ni-Zn ferrite and $Ni_2Y$ ferrite (Ni-Zn 페라이트와 $Ni_2Y$ 페라이트를 혼합한 페라이트/고무복합형 전파흡수체의 전파흡수특성)

  • Kim, H.G.;Kim, S.R.;Lee, S.H.;Cho, H.C.;SaGong, G.
    • Proceedings of the KIEE Conference
    • /
    • 1997.07d
    • /
    • pp.1355-1357
    • /
    • 1997
  • In this study, the ferrite/rubber composite microwave absorbers mixed Ni-Zn ferrite and $Ni_2Y$ ferroxplana were prepared in order to control matching condion. The variation of the material constants($\dot{\varepsilon}$, $\dot{\mu}$) and microwave absorbing characteristics were investigated with various ferrite mixing ratio. The material constants of ferrite/rubber composite microwave absorber could be controlled by variation ferrite mixing radio. The matching frequency and thickness could be controlled with various ferrite mixing ratio.

  • PDF

The Magnetic and Microwave Absorbing Characteristics of Ni-Zn Ferrite Composites (니켈-아연 페라이트복합재의 자기적특성과 전파흡수특성)

  • 조성백;오재희
    • Journal of the Korean Magnetics Society
    • /
    • v.3 no.2
    • /
    • pp.115-120
    • /
    • 1993
  • The relationship between magnetic parameter and microwave absorbing performance evaluation factor of electomagnetic wave absorber such as matching frequency, matching thickness were investigated for Ni-Zn ferrite composites. It was identified that the maximum value of ${\mu}_{r}$" is shift to low frequency with decrese Ni/Zn ratio and the value of ${\mu}_{r}$" is maximum in the case of Ni/Zn=1. All Ni-Zn ferrite composites in this study have two matching frequencies in 1-12 GHz frequency. It can be suggested that $f_{m1}$ is proportional to resonance frequency and $f_{m2}$ is proportional to the saturation magnetization.

  • PDF

Broad-band Multi-layered Radar Absorbing Material Design for Radar Cross Section Reduction of Complex Targets Consisting of Multiple Reflection Structures (다중반사 구조를 갖는 복합구조물의 RCS 감소를 위한 광대역 다층 전파흡수체 설계)

  • Kim, Kook-Hyun;Cho, Dae-Seung;Kim, Jin-Hyeong
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.44 no.4
    • /
    • pp.445-450
    • /
    • 2007
  • An optimum design process of the broad-band multi-layered radar absorbing material, using genetic algorithm, is established for the radar cross section reduction of a complex target, which consists of multiple reflection structures, such as surface warships. It follows the successive process of radar cross section analysis, scattering center analysis, radar absorbing material design, and reanalysis of radar cross section after applying the radar absorbing material. It is demonstrated that it is very effective even in the optimum design of the multi-layer radar absorbing material. This results from the fact that the three factors, i.e.. the incident angle range, broad-band frequencies, and maximum thickness can be simultaneously taken into account by adopting the genetic algorithm.