• Title/Summary/Keyword: 복합이벤트처리

Search Result 33, Processing Time 0.017 seconds

Bio-Sensing Convergence Big Data Computing Architecture (바이오센싱 융합 빅데이터 컴퓨팅 아키텍처)

  • Ko, Myung-Sook;Lee, Tae-Gyu
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.7 no.2
    • /
    • pp.43-50
    • /
    • 2018
  • Biometric information computing is greatly influencing both a computing system and Big-data system based on the bio-information system that combines bio-signal sensors and bio-information processing. Unlike conventional data formats such as text, images, and videos, biometric information is represented by text-based values that give meaning to a bio-signal, important event moments are stored in an image format, a complex data format such as a video format is constructed for data prediction and analysis through time series analysis. Such a complex data structure may be separately requested by text, image, video format depending on characteristics of data required by individual biometric information application services, or may request complex data formats simultaneously depending on the situation. Since previous bio-information processing computing systems depend on conventional computing component, computing structure, and data processing method, they have many inefficiencies in terms of data processing performance, transmission capability, storage efficiency, and system safety. In this study, we propose an improved biosensing converged big data computing architecture to build a platform that supports biometric information processing computing effectively. The proposed architecture effectively supports data storage and transmission efficiency, computing performance, and system stability. And, it can lay the foundation for system implementation and biometric information service optimization optimized for future biometric information computing.

A study on the efficient early warning method using complex event processing (CEP) technique (복합 이벤트 처리기술을 적용한 효율적 재해경보 전파에 관한 연구)

  • Kim, Hyung-Woo;Kim, Goo-Soo;Chang, Sung-Bong
    • 한국정보통신설비학회:학술대회논문집
    • /
    • 2009.08a
    • /
    • pp.157-161
    • /
    • 2009
  • In recent years, there is a remarkable progress in ICTs (Information and Communication Technologies), and then many attempts to apply ICTs to other industries are being made. In the field of disaster managements, ICTs such as RFID (Radio Frequency IDentification) and USN (Ubiquitous Sensor Network) are used to provide safe environments. Actually, various types of early warning systems using USN are now widely used to monitor natural disasters such as floods, landslides and earthquakes, and also to detect human-caused disasters such as fires, explosions and collapses. These early warning systems issue alarms rapidly when a disaster is detected or an event exceeds prescribed thresholds, and furthermore deliver alarm messages to disaster managers and citizens. In general, these systems consist of a number of various sensors and measure real-time stream data, which requires an efficient and rapid data processing technique. In this study, an event-driven architecture (EDA) is presented to collect event effectively and to provide an alert rapidly. A publish/subscribe event processing method to process simple event is introduced. Additionally, a complex event processing (CEP) technique is introduced to process complex data from various sensors and to provide prompt and reasonable decision supports when many disasters happen simultaneously. A basic concept of CEP technique is presented and the advantages of the technique in disaster management are also discussed. Then, how the main processing methods of CEP such as aggregation, correlation, and filtering can be applied to disaster management is considered. Finally, an example of flood forecasting and early alarm system in which CEP is incorporated is presented It is found that the CEP based on the EDA will provide an efficient early warning method when disaster happens.

  • PDF

The Mirror-based real-time dynamic projection mapping design and dynamic object detection system research (미러 방식의 실시간 동적 프로젝션 매핑 설계 및 동적 사물 검출 시스템 연구)

  • Soe-Young Ahn;Bum-Suk Seo;Sung Dae Hong
    • Journal of Internet of Things and Convergence
    • /
    • v.10 no.2
    • /
    • pp.85-91
    • /
    • 2024
  • In this paper, we studied projection mapping, which is being utilized as a digital canvas beyond space and time for theme parks, mega events, and exhibition performances. Since the existing projection technology used for fixed objects has the limitation that it is difficult to map moving objects in terms of utilization, it is urgent to develop a technology that can track and map moving objects and a real-time dynamic projection mapping system based on dynamically moving objects so that it can respond to various markets such as performances, exhibitions, and theme parks. In this paper, we propose a system that can track real-time objects in real time and eliminate the delay phenomenon by developing hardware and performing high-speed image processing. Specifically, we develop a real-time object image analysis and projection focusing control unit, an integrated operating system for a real-time object tracking system, and an image processing library for projection mapping. This research is expected to have a wide range of applications in the technology-intensive industry that utilizes real-time vision machine-based detection technology, as well as in the industry where cutting-edge science and technology are converged and produced.