• Title/Summary/Keyword: 복합소재 3D 프린팅

Search Result 24, Processing Time 0.019 seconds

The effect of silica composite properties on DLP-stereolithography based 3D printing (실리카 복합소재의 물성에 따른 DLP 3D printing 적용 연구)

  • Lee, Jin-Wook;Nahm, Sahn;Hwang, Kwang-Taek;Kim, Jin-Ho;Kim, Ung-Soo;Han, Kyu-Sung
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.29 no.2
    • /
    • pp.54-60
    • /
    • 2019
  • Recently, various composite materials for additive manufacturing are interested to expand the application field of 3D printing. 3D printing technique was mainly developed using polymer, and ceramic materials for 3D printing are still in the early stage of research due to the requirement of high solid content and post treatment process. In this study, silica particles with various diameters were surface treated with silane coupling agent, and synthesized as silica composite with photopolymer to apply DLP 3D printing process. DLP is an additive manufacturing technology, which has high accuracy and applicability of various composite materials. The rheological behavior of silica composite was analyzed with various solid contents. After DLP 3D printing was performed using silica composites, the printing accuracy of the 3D printed specimen was less than about 3 % to compare with digital data and he bending strength was 34.3 MPa at the solid content of 80 wt%.

A Study on the Mechanical behavior of 3D Printed Short-Fiber Reinforced Composite Structures using AM-Structural Coupled Analysis (AM 공정 연계 구조 해석을 활용한 단섬유 강화 복합소재 3D 프린팅 출력물의 기계적 거동 특성 분석)

  • Geung-Hyeon Lee;Da-Young Jang;Chae-Rim Seon;Minho Yoon;Jang-Woo Han
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.37 no.5
    • /
    • pp.309-316
    • /
    • 2024
  • In this paper, additive manufacturing (AM)-structural coupled analysis was proposed to accurately predict the mechanical behavior of 3D printed short-fiber reinforced composite structures. Tensile specimens were printed using a composite 3D printer (Mark Two, Markforged), and tensile tests were conducted on specimens manufactured with various nozzle paths. In addition, a reverse engineering scheme was applied to the experimental data to reasonably derive local anisotropic material properties according to the nozzle paths. Consequently, AM-structural coupled analysis was performed using the enhanced finite element model with mapped local materials properties, and the mechanical behavior of the 3D printed short-fiber reinforced composite was accurately described. To demonstrate the effectiveness of the proposed AM-structural coupled analysis model, the computational results obtained were compared with experimental results.

A Study on the Development of a Novel Pressure Sensor based on Nano Carbon Piezoresistive Composite by Using 3D Printing (3D 프린팅을 활용한 탄소 나노 튜브 전왜성 복합소재 기반 압력 센서 개발 연구)

  • Kim, Sung Yong;Kang, Inpil
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.41 no.3
    • /
    • pp.187-192
    • /
    • 2017
  • This paper presents an ongoing study to develop a novel pressure sensor by means of a Nano Carbon Piezoresistive Composite (NCPC). The sensor was fabricated using the 3D printing process. We designed a miniaturized cantilever-type sensor electrode to improve the pressure sensing performance and utilized a 3D printer to build a small-sized body. The sensor electrode was made of 2 wt% MWCNT/epoxy piezoresistive nano-composite, and the sensor body was encapsulated with a pipe plug cap for easy installation to any pressure system. The piezoresistivity responses of the sensor were converted into stable voltage outputs by using a signal processing system, which is similar to a conventional foil strain gauge. We evaluated the pressure-sensing performances using a pressure calibrator in the lab environment. The 3D-printed cantilever electrode pressure sensor showed linear voltage outputs of up to 16,500 KPa, which is a 200% improvement in the pressure sensing range when compared with the bulk-type electrode used in our previous work.

GF/PC Composite Filament Design & Optimization of 3D Printing Process and Structure for Manufacturing 3D Printed Electric Vehicle Battery Module Cover (전기자동차 배터리 모듈 커버의 3D 프린팅 제작을 위한 GF/PC 복합소재 필라멘트 설계와 3D 프린팅 공정 및 구조 최적화)

  • Yoo, Jeong-Wook;Lee, Jin-Woo;Kim, Seung-Hyun;Kim, Youn-Chul;Suhr, Jong-Hwan
    • Composites Research
    • /
    • v.34 no.4
    • /
    • pp.241-248
    • /
    • 2021
  • As the electric vehicle market grows, there is an issue of light weight vehicles to increase battery efficiency. Therefore, it is going to replace the battery module cover that protects the battery module of electric vehicles with high strength/high heat-resistant polymer composite material which has lighter weight from existing aluminum materials. It also aims to respond to the early electric vehicle market where technology changes quickly by combining 3D printing technology that is advantageous for small production of multiple varieties without restrictions on complex shapes. Based on the composite material mechanics, the critical length of glass fibers in short glass fiber (GF)/polycarbonate (PC) composite materials manufactured through extruder was derived as 453.87 ㎛, and the side feeding method was adopted to improve the residual fiber length from 365.87 ㎛ and to increase a dispersibility. Thus, the optimal properties of tensile strength 135 MPa and Young's modulus 7.8 MPa were implemented as GF/PC composite materials containing 30 wt% of GF. In addition, the filament extrusion conditions (temperature, extrusion speed) were optimized to meet the commercial filament specification of 1.75 mm thickness and 0.05 mm standard deviation. Through manufactured filaments, 3D printing process conditions (temperature, printing speed) were optimized by multi-optimization that minimize porosity, maximize tensile strength, and printing speed to increase the productivity. Through this procedure, tensile strength and elastic modulus were improved 11%, 56% respectively. Also, by post-processing, tensile strength and Young's modulus were improved 5%, 18% respectively. Lastly, using the FEA (finite element analysis) technique, the structure of the battery module cover was optimized to meet the mechanical shock test criteria of the electric vehicle battery module cover (ISO-12405), and it is satisfied the battery cover mechanical shock test while achieving 37% lighter weight compared to aluminum battery module cover. Based on this research, it is expected that 3D printing technology of polymer composite materials can be used in various fields in the future.

3D Printable Composite Materials: A Review and Prospective (3D 프린터용 복합재료 연구 동향)

  • Oh, Eunyoung;Lee, Jinwoo;Suhr, Jonghwan
    • Composites Research
    • /
    • v.31 no.5
    • /
    • pp.192-201
    • /
    • 2018
  • The use of 3D printing for rapid tooling and manufacturing has promised to produce components with complex geometries according to computer designs and it is emerging as the next generation key of manufacturing. Due to the intrinsically limited mechanical/electrical properties and functionalities of printed pure polymer parts, there is a critical need to develop 3D printable polymer composites with high performance. This article gives a review on 3D printing techniques of polymer composite materials and the properties and performance of 3D printed composite parts as well as their potential applications in the various fields.

A Study on the socio-economic impact of 3D Printing (3D프린팅이 사회·경제에 미치는 영향에 관한 연구)

  • Kim, Hyeon-Chang
    • Journal of Digital Convergence
    • /
    • v.13 no.7
    • /
    • pp.23-31
    • /
    • 2015
  • With the expiration of main patent of printing method, public interest now has shifted to 3D printing. In this, it needs to shine a light on the negative effects, particularly in the socio-economic aspect of 3D printing. By analyzing the existing research findings, policy reports and press releases, the negative effects of 3D printing and its countermeasures were derived. The main drawbacks of 3D printing includes the following: It might cause 3D printing-related crimes(e.g. printed weapons, intellectual property infringement, etc.) and it poses a big threat to other related business sectors.(e.g. potential job loss in molding and medical equipments manufacturing industries) What's more, the nature of 3D printing that it is easy to operate attracts lots of people, which then leads to serious social and environmental problems-product liability, ethical issues, environmental pollution, and finally government's blindly excessive investment in 3D printing. To avoid such potential risks, the government should establish and enforce the institutional law, and guidelines. Government's rational investment decision is also inevitable for the short-term and long-term sustainability of 3D printing.

Complex heat-treatment effects on as-built CoCrMo alloy (적층공정법으로 제작된 CoCrMo 합금의 복합열처리 효과)

  • Lee, Jung-Il;Kim, Hung Giun;Jung, Kyung-Hwan;Kim, Kang Min;Son, Yong;Ryu, Jeong Ho
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.28 no.6
    • /
    • pp.250-255
    • /
    • 2018
  • The CoCrMo as-built alloys prepared by 3D-printing process are studied on tensile strength, wear resistance, crystal structure and microstructure after complex heat-treatment including HIP. In this study, HIP treatment for removing micropores, ambient heat-treatment for formation of metal carbides, and solution heat-treatment for homogenization of the created metal carbides were tried and characterized for applying to artificial joint. The complex heat-treatment effects of the CoCrMo as-built alloys prepared by 3D-printing process were owing to the densification during HIP, formation of metal carbides and homogenization of the created metal carbides. The effects of the complex heat-treatment were confirmed by XRD, FE-SEM and EDS.

A Study on the Improvement of Bending Characteristics of 3D Printed Thermoplastic Structures Reinforced at the Lateral Surface using Continuous Fiber Reinforced Thermosetting Composites (열경화성 연속섬유 복합재를 이용해 외측 보강된 3D 프린팅 열가소성 복합재 구조물의 굽힘 특성 향상에 대한 연구)

  • Baek, Un-Gyeong;Nam, Gibeop;Roh, Jae-Seung;Park, Sung-Eun;Roh, Jeong-U
    • Composites Research
    • /
    • v.34 no.2
    • /
    • pp.136-142
    • /
    • 2021
  • 3D printing technology has the advantage of easy to make various shapes of products without a mold. However, it has a problem such as mechanical properties vary greatly depending on materials and manufacturing conditions. Thus, the need for research of 3D printing technology on ways to reduce manufacturing cost compared to physical properties is increasing. In this study, a 3D printing thermoplastic structure was fabricated using short fiber carbon fiber reinforced nylon filaments. And a method of improving mechanical properties was proposed by reinforcing the outer surface using pultruded continuous fiber-type carbon fiber or glass fiber-reinforced thermosetting composite material. It was confirmed that the bending properties were improved according to the reinforcing position of the stiffener and the type of fiber in the stiffener.

Mechanical Properties of 3D Printed Composite Material on Various Thermal Environment (다양한 온도 환경에 따른 3D 프린트 복합재료의 기계적 물성 평가)

  • Sang-Hun Kang;Do-Hyeon Kim;Hyoung-Seock Seo
    • Composites Research
    • /
    • v.36 no.3
    • /
    • pp.193-198
    • /
    • 2023
  • Currently, there are many discussions about composite materials and 3D printed composite material to weight reduction of ships. A test was conducted to confirm the applicability of the 3D printed composite material to ships and offshore structures by linking the 3D printing technology with excellent productivity and the composite material with corrosion resistance and lightweight characteristics in salt water environments. In order to apply the 3D printed composite material used in this paper to ships and offshore structures, the temperature environmental effects that can be exposed in the marine environment should be considered. Therefore, the tensile test was conducted with specimen of Carbon + Onyx, Carbon + Nylon, HSHT glass + Onyx, HSHT glass + Nylon material in low temperature (-50℃), room temperature (20℃), and high temperature (50℃) environments that can be exposed to the marine environment. As a result of the tensile test, the carbon + onyx specimen showed the highest tensile strength and the HSHT glass + onyx specimen showed the highest tensile strain. In addition, by analyzing the tested specimens, the failure mode of the 3D printed composite material specimens exposed to various temperature environments was analyzed.

Experimental analysis of heat exchanger performance produced by laser 3D printing technique (레이저 3D 프린팅 기법으로 제작한 열교환기 성능시험 분석 연구)

  • Kim, Moosun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.21 no.7
    • /
    • pp.270-276
    • /
    • 2020
  • 3D printing is an additive manufacturing technology that can produce complex shapes in a single process for a range of materials, such as polymers, ceramics, and metals. Recent 3D printing technology has developed to a level that enables the mass-production through an improvement of the printing speed and the continuous development of applicable materials. In this study, 3D printing technology using a laser was applied to manufacture a heat exchanger for an air compressor in a railway vehicle. First, the optimal design of the heat exchanger was carried out by focusing on weight reduction and compactness as a shape suitable for 3D printing. Based on the design derived, heat exchanger prototypes were made of AlSi10Mg alloy material by applying the SLM technique. Moreover, the manufactured prototypes were attached to an existing air compressor, and the heat exchange performance of the compressed air was tested. The test results of the 3D printed prototypes showed a heat exchange performance of approximately 80% and 85% at low and high-pressure, respectively, compared to the existing heat exchanger. From the 𝓔-NTU method results with an external cooling air condition similar to that of the existing heat exchanger, the calculated heat transfer amount of 3D printed parts showed similar performance compared to the existing heat exchanger. As a result, the 3D printed heat exchanger is lightweight with good performance.