DOI QR코드

DOI QR Code

A Study on the Mechanical behavior of 3D Printed Short-Fiber Reinforced Composite Structures using AM-Structural Coupled Analysis

AM 공정 연계 구조 해석을 활용한 단섬유 강화 복합소재 3D 프린팅 출력물의 기계적 거동 특성 분석

  • Geung-Hyeon Lee (Department of Mechanical Engineering, Kumoh National Institute of Technology) ;
  • Da-Young Jang (Department of Mechanical Engineering, Kumoh National Institute of Technology) ;
  • Chae-Rim Seon (Department of Mechanical and Information Engineering, The University of Seoul) ;
  • Minho Yoon (Department of Mechanical and Information Engineering, The University of Seoul) ;
  • Jang-Woo Han (School of Mechanical System Engineering, Kumoh National Institute of Technology)
  • 이긍현 (국립금오공과대학교 기계공학과) ;
  • 장다영 (국립금오공과대학교 기계공학과) ;
  • 선채림 (서울시립대학교 기계정보공학과) ;
  • 윤민호 (서울시립대학교 기계정보공학과) ;
  • 한장우 (국립금오공과대학교 기계시스템공학부)
  • Received : 2024.06.20
  • Accepted : 2024.07.15
  • Published : 2024.10.31

Abstract

In this paper, additive manufacturing (AM)-structural coupled analysis was proposed to accurately predict the mechanical behavior of 3D printed short-fiber reinforced composite structures. Tensile specimens were printed using a composite 3D printer (Mark Two, Markforged), and tensile tests were conducted on specimens manufactured with various nozzle paths. In addition, a reverse engineering scheme was applied to the experimental data to reasonably derive local anisotropic material properties according to the nozzle paths. Consequently, AM-structural coupled analysis was performed using the enhanced finite element model with mapped local materials properties, and the mechanical behavior of the 3D printed short-fiber reinforced composite was accurately described. To demonstrate the effectiveness of the proposed AM-structural coupled analysis model, the computational results obtained were compared with experimental results.

본 논문에서는 3D 프린팅 공정을 통해 제작된 단섬유 강화 복합소재 구조물의 기계적 거동을 효과적으로 예측하기 위한 AM 공정 연계 구조 해석 기법을 제안하였다. 복합소재 3D 프린터(Mark Two, Markforged)를 활용하여 다양한 노즐 경로를 갖는 인장 시편을 출력하였으며, 출력물에 대한 인장 시험을 진행하였다. 또한, 노즐 경로에 따른 부위별 이방 물성을 도출하기 위해 실험적 데이터를 기반으로 역공학 기법을 적용하였다. 제안된 AM 공정 연계 구조 해석 방안의 타당성을 검증하기 위해 실험 결과와의 비교/분석을 병행하였으며, 부위별 이방 물성이 반영된 FE 모델을 바탕으로 AM 공정 연계 구조 해석을 수행함으로써 복합소재 3D 프린팅 출력물의 거동 양상을 정확하게 예측할 수 있음을 확인하였다.

Keywords

Acknowledgement

이 성과는 정부(과학기술정보통신부)의 재원으로 한국연구재단의 지원을 받아 수행된 연구이며(NRF-2022R1C1C1012599), 또한 정부(과학기술정보통신부)의 재원으로 한국연구재단의 지원을 받아 수행된 연구임(RS-2024-00356107).

References

  1. Coogan, T.J., Kazmer, D.O. (2017) Bond and Part Strength in Fused Deposition Modeling, Rapid Prototyp. J., 23(2), pp. 414~422.
  2. Digimat (2023) User's Manual, MSC Software Company (Release 2023.2)
  3. El Essawi, B., Abdallah, S., Ali, S., Mohammed, A.N.A., Susantyoko, R.A., Pervaiz, S. (2024) Optimization of Infill Density, Fiber Angle, Carbon Fiber Layer Position in 3D Printed Continuous Carbon-Fiber Reinforced Nylon Composite, Results Eng., 21, p.101926.
  4. Hill, N., Haghi, M. (2014) Deposition Direction-Dependent Failure Criteria for Fused Deposition Modeling Polycarbonate, Rapid Prototyp. J., 20(3), pp.221~227.
  5. Kang, Y.G., Lee, T.W., Shin, G.S. (2017) The Influence of Experiment Variables on 3D Printing using ABS Resin, J. Korean Soc. Manuf. Proc. Eng., 16(2), pp.94~101.
  6. Kim, Y.M., Kim, Y.H. (2020) A Study on the Fatigue Analysis of Glass Fiber Reinforced Plastics with Linear and Nonlinear Multi-Scale Material Modeling, J. Comput. Struct. Eng. Inst. Korea, 33(2), pp.81~93.
  7. Kim, Y.M., Kim, Y.H. (2019) Coupled Analysis with Digimat for Realizing the Mechanical Behavior of Glass Fiber Reinforced Plastics, J. Comput. Struct. Eng. Inst.Korea, 32(6), pp.349~357.
  8. Lee, S., Ryu, S. (2020) A Review of Mean-Field Homgenization for Effective Physical Properties of Particle-Reinforced Composites, Compos. Res., 33(2), pp.81~89.
  9. Mishra, P.K., Karthik, B., Jagadesh, T. (2024) Finite Element Modelling and Experimental Investigation of Tensile, Flexural, and Impact Behaviour of 3D-Printed Polyamide, J. Inst. Eng. (India): Series D, 105(1), pp.275~283.
  10. Mohan, E., Saravana Kumar, M. (2022) Experimental Investigation on Mechanical and Tribological Properties of the Fused Filament Fabrication of Poly-Lactic Acid Parts with Various Print Orientations, Appl. Phys. A, 128(5), p.428.
  11. Nabavi-Kivi, A., Ayatollahi, M.R., Razavi, N. (2023) Investigating the Effect of Raster Orientation on Fracture behavior of 3D-Printed ABS Specimens under Tension-Tear Loading, Eur. J. Mech.-A/Solids, 99, p.104944.
  12. Park, H.M., Lee, G.B., Seon, C.R., Yoon, M. (2022) Experimental Validation of Topology Design Optimization Considering Lamination Direction of Three-dimensional Printing, J. Comput. Struct. Eng. Inst. Korea, 35(3), pp.191~196.
  13. Samykano, M. (2021) Mechanical Property and Prediction Model for FDM-3D Printed Polylactic Acid (PLA), Arabian J. Sci. & Eng., 46, pp.7875~7892.
  14. Samykano, M., Selvamani, S.K., Kadirgama, K., Ngui, W.K., Kanagaraj, G., Sudhakar, K. (2019) Mechanical Property of FDM Printed ABS: Influence of Printing Parameters, The Int. J. Adv. Manuf. Technol., 102, pp.2779~2796.
  15. Turaka, S., Jagannati, V., Pappula, B., Makgato, S. (2024) Impact of Infill Density on Morphology and Mechanical Properties of 3D Printed ABS/CF-ABS Composites using Design of Experiments, Heliyon, 10(9), p.e29920.
  16. Vedrtnam, A., Ghabezi, P., Gunwant, D., Jiang, Y., Sam-Daliri, O., Harrison, N., Goggins, J., Finnegan, W. (2023) Mechanical Performance of 3D-Printed Continuous Fibre Onyx Composites for Drone Applications: An Experimental and Numerical Analysis, Compos. Part C: Open Access, 12, p.100418.
  17. Wang, X., Zhao, L., Fuh, J.Y.H., Lee, H.P. (2019) Effect of Porosity on Mechanical Properties of 3D Printed Polymers: Experiments and Micromechanical Modeling based on X-ray Computed Tomography Analysis, Polym., 11(7), p.1154.