• Title/Summary/Keyword: 복합곡면

Search Result 77, Processing Time 0.025 seconds

Study on mechanical behavioral characteristics of the curved FRP-concrete composite member for utilization as a tunnel lining structure (터널 라이닝 구조체로서 활용을 위한 곡면 FRP-콘크리트 복합부재의 역학적 거동특성 분석 연구)

  • Lee, Gyu-Phil;Shin, Hyu-Soung;Kim, Seung-Han
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.13 no.2
    • /
    • pp.149-158
    • /
    • 2011
  • Utilization of the fiber reinforced polymer (FRP) material has been increased as an alternative in a bid to supplement the problems with general construction materials such as long-term problems corrosion, etc. However, there are still many problems in using a linear-shaped FRP material for a tunnel lining structure which has arch-shape in general. In this study, the loading tests for the FRP-concrete composite member was carried out to evaluate their applicability as a tunnel reinforcement material, which are based on the results from preliminary numerical studies for identifying the behavioral characteristics of FRP-concrete composite member. Moreover, numerical analysis under the same condition as applied in the loading tests was again conducted for analysis of mechanical behavior of the composite member. As a result of the load test and numerical analysis, it appears that the FRP-concrete composite member is greatly subject to shear movement caused by bending tension acting on the interface between two constituent members.

An Experimental Study on the Behavior of Small Scale Curved Panel Using Composite Materials (복합소재를 활용한 곡면 패널 축소형 실험체의 구조 성능 평가)

  • Park, Hee Beom;Park, Jong-Sup;Kang, Jae-Yoon;Jung, Woo-Tai
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.6
    • /
    • pp.1-8
    • /
    • 2018
  • FRP is a new material that is light, has high strength and high durability, and is emerging as a third construction material inside and outside of countries. However, very few studies have been done on curved FRP construction materials that can be used for tunnels or arched bridges. Because a small composite panel specimen is smaller than a full-size specimen, it can be used in a variety of experiments under different conditions. Therefore, in this study, experiments were performed on a void section, a solid section, a connected solid section, and a sand-coating solid section. The results of the experiment show that the connection of composite curved panels with longitudinal connections provides almost equivalent performance to that of a single panel. However, it is necessary to strengthen the connections, since the connections that are most susceptible to damage will break first.

A study on chemical bonding characteristics of the interface between curved FRP panels for consecutive structural assembly (곡면 FRP 패널 부재 연속시공을 위한 연결부 화학적 접합 특성에 관한 연구)

  • Lee, Gyu-Phil;Shin, Hyu-Soung;Jung, Woo-Tai
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.14 no.1
    • /
    • pp.79-91
    • /
    • 2012
  • A curved fiber reinforced polymer (FRP) panel is produced with a certain width depending on allowances of manufacturing processes and facilities. An targeted arch-shaped structure could be built by sequential connection of series of the FRP panels. The connection manner between the FRP panels could be given by chemical treatment, mechanical treatment and hybrid method. Among those, the connection between the panels by chemical treatment is commonly adopted. Therefore, For an optimized design of the connected part between FRP pannels, a number of direct shear tests have been undertaken in terms of a number of parameters: surface treatment conditions, bonding materials, etc.. As results, surface grinding condition by sand paper or surface treatment by sand blasting appear properly acceptable methods, and epoxy and acryl resins are shown to be effective bonding materials for the purpose in this study.

Analysis of Hydrostatic Bulging of a Rectangular Diaphragm by Using the Energy Method (에너지법에 의한 직사각형 격막의 정수압벌징 해석)

  • 양동열;이항수
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.16 no.4
    • /
    • pp.684-695
    • /
    • 1992
  • The present study is concerned with the analysis of three-dimensional sheet metal forming process by the upper-bound method. For the analysis a systematic approach is necessary for the expression of geometric configuration of the deforming workpiece. In the present paper geometric configuration is constructed by three unit surfaces which are defined by sweeping the vertical section curves and boundary curve. The principal components of strain increment during the process is calculated directly from the change of geometric configuration for an arbitrary triangular element. The corresponding solution is found through optimization of the total energy consumption with respect to some parameters assumed in the velocity field and geometric profile. In order to verify the effectiveness of the present method, hydrostatic bulging of a rectangular disphragm is analyzed and the computation by the present method for the geometric shape renders the good result. From the comparison of the present results with the existing experimental results and elastic-plastic finite element solutions, good agreements have been obtained for the pressure curves, polar membrane strains and pressure distributions. The present method can thus be further applied to the analysis of other three-dimensional sheet metal forming processes.

Design Analysis/Manufacturing /Performance Evaluation of Curved Unsymmetrical Piezoelectric Composite Actuator LIPCA (곡면형 비대칭 압전복합재료 작동기 LIPCA의 설계해석/제작/성능평가)

  • Gu, Nam-Seo;Sin, Seok-Jun;Park, Hun-Cheol;Yun, Gwang-Jun
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.25 no.10
    • /
    • pp.1514-1519
    • /
    • 2001
  • This paper is concerned with design, manufacturing and performance test of LIPCA ( Lightweight Piezo- composite Curved Actuator) using a top carbon fiber composite layer with near -zero CTE(coefficient of thermal expansion), a middle PZT ceramic wafer and a bottom glass/epoxy layer with high CTE. The main point of this design is to replace the heavy metal layers of THUNDER by thigh tweight fiber reinforced plastic layers without losing capabilities to generate high force and large displacement. It is possible to save weight up to about 30% if we replace the metallic backing material by the light fiber composite layer. We can also have design flexibility by selecting the fiber direction and the size of prepreg layers. In addition to the lightweight advantage and design flexibility, the proposed device can be manufactured without adhesive layers when we use epoxy resin prepreg system. Glass/epoxy prepregs, a ceramic wafer with electrode surfaces, and a graphite/epoxy prepreg were simply stacked and cured at an elevated temperature (177 $^{circ}C$ after following an autoclave bagging process. It was found that the manufactured composite laminate device had a sufficient curvature after detached from a flat mold. The analysis method of the cure curvature of LIPCA using the classical lamination theory is presented. The predicted curvatures are fairly in agreement with the experimental ones. In order to investigate the merits of LIPCA, a performance test of both LIPCA and THUNDE$^{TM}$ were conducted under the same boundary conditions. From the experimental actuation tests, it was observed that the developed actuator could generate larger actuation displacement than THUNDERT$^{TM}$.

Conductive Pattern of a Curved Surface Polymer Material by Laser Technique (레이저조사에 의한 굴곡면 폴리머소재의 전도성패턴 기술)

  • Yoon, Shin-Yong;Choi, Geun-Soo;Baek, Soo-Hyun;Kim, Yong;Chang, Hong-Soon
    • Proceedings of the KIEE Conference
    • /
    • 2011.07a
    • /
    • pp.1045-1046
    • /
    • 2011
  • 본 논문에서는 굴곡면 커버내에 전기회로를 구현시 그 동안 포토리소그라피 공정으로 제작된 PCB를 휴대기 등 내부 케이스에 부착하여 전기회로를 구현하였으나 본 논문에서는 PCB없이 직접 케이스인 복합 폴리머소재에 레이저조사에 의해 패턴과 무전해도금으로 전기회로를 직접구현하는 기술이다. 이러한 방법은 제안한 3단계 공정기법에 의해 가능하며, 즉 사출형 복합폴리머소재제작, 소재의 레이저조사에 의한 시드패턴 구현 및 형성시드의 무전해도금에 의한 전도성패턴구현 공정을 통하여 곡면커버의 전기회로구현이 가능하다. 이에 따라 기존의 복잡한 10 단계 이상의 포토리소그라피 공정을 레이저조사에 의한 3단계 공정으로 간소화함으로서 제품의 생산성향상, 다량장비 구입절감, 작업공간축소 및 기타 소재절감 등의 경제적 효과를 얻을 수 있다. 응용분야는 2차원 평면 전기회로 외에 3차원 곡면형상의 제품인 자동차, 휴대폰, 의료기, 센서, 오토바이 등의 커버에 직접회로 응용이 가능하다. 이에 대한 타당성은 실험결과를 통하여 입증하였다.

  • PDF

Compound Machining of Milling and Magnetic Abrasive Polishing for Free Form Surface (자유곡면의 밀링 자기연마 복합가공에 관한 연구)

  • Kwak, Tae-Kyung;Kim, Sang-Oh;Kwak, Jae-Seob
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.19 no.4
    • /
    • pp.455-461
    • /
    • 2010
  • Automated magnetic abrasive polishing which can be applied after machining of the mold on a machine tool without unloading is very effective for finishing a complicated injection mold surface. This study aims to realize one step polishing of free form surface with the same machine tool. For this purpose, magnetic flux density according to the change of curvature radii was simulated for selecting polishing conditions and experimental verification was performed with a complicated mold of aluminum alloy. As a result, it was seen by the simulation that the magnetic flux density at a gradual curvature of the mold was higher than at a steep curvature and the higher magnetic flux density produced the better surface roughness in the experimentation. The deviation for the surface roughness of the mold decreased on the whole and the uniform mold surface was obtained after the automated magnetic abrasive polishing.

복합다양체 자료구조를 갖는 형상모델러에서 오일러 작업자의 구현

  • 명세현;한순흥
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1993.10a
    • /
    • pp.675-680
    • /
    • 1993
  • 컴퓨터를 이용한 제품의 설계시 개념설계부터 최종설계에 이르는 동안 설계모델은 많은 수정을 요하게 된다. 이 과정에서 개념설계 단계부터 솔리드 모델을 채용하는 것은 불편하므로, 와이어프레임 모델이나 곡면 모델을 이용하여 설계를 진행하다가, 최종설계 단계에서 솔리드 모델로 전환하는 것이 바람직하다. 이 경우 이 3가지 모델을 모두 지원하는 모델러가 요구되는데 '복합다양체'를 지원하는 모델러가 이 요건을 만족시킨다. 또한 경계표현(B-rep)방식으로 모델링시 불리안 작업자를 많이 이용하는데, 모델링 도중에 불리한 작업으로 생성된 모델의 Undo작업은 용이하지 않은 일이다. 따라서 불리안 작업으로 생성된 모델의 수정작업을 위한 알고리즘이 요구된다, 일한 수정작업을 위해선 복합다양체를 지원하는 자료구조가 필요하다. 본 논문에선 이러한 복합다양체 자료구조를 갖는 형상모델러의 기본적 자료구조와 기본물체 모델링시 오일러 작업자를 구현하였다.

  • PDF

The Modelling and Machining of Leisure Boat Plug using CAD/CAM System (CAD/CAM 시스템을 이용한 레저보트의 플러그 모델링 및 가공)

  • Kim, Seong-Il
    • 대한공업교육학회지
    • /
    • v.33 no.2
    • /
    • pp.259-272
    • /
    • 2008
  • In order to improve the productivity and quality of boat's mold in leisure boat industry, the development of modelling and machining technology of leisure boat's plug is strongly required. The traditional lines drawing approach by hand required the designer to both create fair curves and to make sure that the curves matched up to each other in the three main drawing views: profile, plan, and section. However, one will find when studying lines drawings in books that the curves might look smooth and fair, but the lines do not agree exactly in the three views. Therefore, the 2 dimensional drawing data of leisure boat are transformed using 3 dimensional design s/w and CAM s/w. In addition, the leisure boat is designed with a 3 dimensional s/w. The NC cutting data are generated by the CAM s/w. The surface characteristics of machined surface are investigated at various cutting conditions such as spindle speed, feed speed, and cutting material.

The Curved Interfacial Crack Analysis between Foam and Composite Materials under Anti-plane Shear Force (반평면 전단하중력을 받는 곡면형상을 가지는 폼과 복합재료 접합부의 계면크랙에 관한 연구)

  • 박상현;신재윤;전흥재
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2000.04a
    • /
    • pp.101-104
    • /
    • 2000
  • The general solution of the anti-plane shear problem for the curved interfacial crack between viscoelastic foam and composites was investigated with the complex variable displacement function and Kelvin-Maxwell model. The Laplace transform was applied to treat the viscoelastic characteristics of foam in the analysis. The stress intensity factor near the interfacial crack tip was predicted by considering both anisotropic and viscoelastic properties of two different materials. The results showed that the stress intensity factor increased with increasing the curvature of the curved interfacial crack and it also increased and eventually converged to a specific value with increasing time.

  • PDF