• Title/Summary/Keyword: 복합곡면

Search Result 77, Processing Time 0.022 seconds

Development of Lightweight Piezo-composite Curved Actuator (곡면형 압전 복합재료 작동기 LIPCA 개발)

  • Park, Ki-Hoon;Yoon, Kwang-Joon;Park, Hoon-Cheol
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.30 no.5
    • /
    • pp.94-100
    • /
    • 2002
  • This paper is concerned with the development, and performance test of LIPCA (Lightweight Piezo-composite Curved Actuator) that is lighter than other conventional piezo-composite type actuators. LIPCA is composed of top fiber composite layers with a high modulus and low CTE (Coefficient of Thermal Expansion), a middle PZT cermaic wafer, and base layers with a high modulus and high CTE. The performance of each actuator was evaluated using an actuator test system consisting of an actuator supporting jig, a high voltage actuating power supplier, and a non-contact laser measuring system. The simply supported condition actuator was excited by the power supplier with 1.0Hz cycle and up to $100\sim400V_{pp}$. The displacement at the center point of actuator was measured with non-contact laser displacement measuring system, It has been shown that the LIPCA-C2 can 34% decrease in mass and 13% increase in displacement compared to THUNDER.

CFRP 적층쉘의 고속 관통실험에 따른 에너지 흡수특성

  • 조영재;김영남;양인영
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2004.05a
    • /
    • pp.62-62
    • /
    • 2004
  • 최근 신소재인 선진 복합 재료 중 탄소 섬유 강화 플라스틱(이하 CFRP라고 한다. )은 비강도, 비강성이 높기 때문에 경량화가 요구되는 여러 분야, 즉 항공기, 인공위성, 원자로, 자동차 산업분야, 조선 산업분야 등 널리 사용되고 있다. 경량화가 요구되는 분야에 사용되는 구조 부재의 형상은 평판보다는 다양한 형태의 곡면 형상을 뛰는 챌(Shell)의 형상을 갖는다. 또한 이러한 구조물에 충격이 가해 졌을 때 곡면을 갖는 구조물의 충격_응답 및 파괴형태는 평판과는 다른 양상을 보인다.(중략)

  • PDF

Approximation of a compound surface to polyhedral model (복합곡면의 다면체 곡면 근사)

  • 김영일;전차수;조규갑
    • Proceedings of the Korean Operations and Management Science Society Conference
    • /
    • 1996.04a
    • /
    • pp.100-103
    • /
    • 1996
  • Presented in this study is an algorithmic procedure to obtain polyhedral model from a compound surface. The compound surface in this study denotes a collection of trimmed surfaces without topological relations. The procedure consists of two main modules: CAD data interface, and surface conversion to polyhedral model. The interface module gets geometric information from CAD databases, and makes topological information by scanning the geometric information. We are investigating CATIA system as a data source system. In the surface conversion module, a shell(compound surface with topological information) is approximated to a triangular-faceted polyhedral surface model through node sampling and triangulation steps. The obtained polyhedral model should obey the vertex-to-vertex rule and meet tolerance requirements. Since the polyhedral model has a simple data structure and geometry processing for it is very efficient and robust, the polyhedral model can be used in various applications, such as surface rendering in computer graphics, FEM model for engineering analysis, CAPP for surface machining, data generation for SLA, and NC tool path generation.

  • PDF

Finite Element Analysis for Actuating Performance Evaluation of LIghtweight Piezo-composite Curved Acutator (경량 압전복합재료 곡면형 작동기(LIPCA)의 작동성능 평가를 위한 유한요소 해석)

  • Gu, Nam-Seo
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.25 no.11
    • /
    • pp.1881-1886
    • /
    • 2001
  • A numerical method for actuating performance evaluation of LIPCA proposed using a finite element method. Fully coupled formulations for piezo-electric materials were introduced and 3-dimensional eight-node incompatible element was used. After verifying the developed code with typical examples, the center deflections of LIPCA were calculated and compared with the experimental result, which were in fairly agreement.

A Study on the Tool Interference Detection and Tool Path Correction in Compound Surface Machining (복합곡면 가공시 공구간섭의 탐지와 공구경로 수정에 관한 연구)

  • 조명우
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.8 no.6
    • /
    • pp.105-112
    • /
    • 1999
  • In this paper we deal with tool interference problem in the case of compound surface machining. A new tool interference detection and correction method based on the envelope of the tool path is suggested to identify and correct the tool interference - not only within the local path of tool movement, but also outside of the tool path. Therefore, the developed strategy can be used to check the possible interference in any region of the surface. In order to analyze quantitatively the milled surface error produced by the tool interference, improved surface prediction model is also suggested in cutting process by general cutters. The effectiveness of the proposed method is demonstrated through simulation study.

  • PDF

Flutter Optimization of Composite Curved Wing Using Genetic Algorithms (유전자 알고리즘을 이용한 복합재료 곡면날개의 플러터 최적화)

  • Alexander, Boby;Kim, Dong-Hyun;Lee, Jung-Jin
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2006.05a
    • /
    • pp.696-702
    • /
    • 2006
  • Flutter characteristics of composite curved wing were investigated in this study. The efficient and robust system for the flutter optimization of general composite curved wing models has been developed using the coupled computational method based on both the standard genetic algorithm and the micro genetic algorithms. Micro genetic algorithm is used as an alternative method to overcome the relatively poor exploitation characteristics of the standard genetic algorithm. The present results show that the micro genetic algorithm is more efficient in order to find optimized lay-ups for a composite curved wing model. It is found that the flutter stability of curved wing model can be significantly increased using composite materials with proper optimum lamination design when compared to the case of isotropic wing model under the same weight condition.

  • PDF

Real-Time Surface Interpolator for Multiple Surface Machining Based on a Surface Cycle Command (복합 사이클 코드 지령 방식의 다중곡면 가공을 위한 실시간 곡면 보간기)

  • Koo, Tae-Hoon;Jee, Sung-Chul
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.24 no.8 s.197
    • /
    • pp.97-107
    • /
    • 2007
  • The present CNC machining system if without any CAM software has been limited to 2D or 2.5D plane cut using lines, arcs and curves. If the CNC is equipped with a surface interpolation module and a surface reorganizing module inside it, we can easily try 3D surface machining without aid of CAM software. The existing NURBS surface interpolator is simple and direct to use for a unit surface. However, it enables only machining of each reference surface individually even when machining a simple composite surface. In this paper, we propose a method which can unify and reorganize various reference surfaces with a newly defined NURBS surface cycle command: a multi-repetitive cycle command such as in a CNC turning center. We also introduce a reorganizing rule for reference surfaces using NURBS properties. The usefulness of the proposed method is verified through computer simulation.

An Experimental Study on the Behavior of Curved Panel Parts Using Composite Materials (복합소재를 활용한 곡면 패널의 부재단위 성능 평가)

  • Park, Hee Beom;Park, Jong-Sup;Kang, Jae-Yoon;Jung, Woo-Tai
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.7
    • /
    • pp.474-480
    • /
    • 2018
  • FRP is a new material that is lightweight, has high strength and high durability, and is emerging as a third construction material in many countries. The composite material panel targeted in this study was a curved member and is the most frequently used arch-shaped member of a structures, such as tunnels. Composite curved panels can be produced in high quality and large quantities through automation operations. On the other hand, the frequency of application is low, and the design criteria and experimental data are lacking. Therefore, this study examined the mechanical performance of the member unit first to verify its performance as structural members of the FRP curved panel. For this purpose, tensile, compression, and connection performance tests were carried out. The tensile tests showed greater tensile strength of specimens with larger curvature, and the compression tests showed that the composite section of a composite material has greater compressive strength than the concrete section. Finally, the test of the performance of the connection showed that the attachment performance of the connection was more than equal to that of the FRP composite material panel.

Design and Fabrication of Semi-cylindrical Radar Absorbing Structure using Fiber-reinforced Composites (섬유강화 복합재료를 이용한 반원통형 전자파 흡수구조의 설계 및 제작)

  • Jang, Hong-Kyu;Shin, Jae-Hwan;Kim, Chun-Gon;Shin, Sang-Hun;Kim, Jin-Bong
    • Composites Research
    • /
    • v.23 no.2
    • /
    • pp.17-23
    • /
    • 2010
  • The stealth technology can increase the survivability of aircrafts or warships and enhance the capability of mission completion in hostile territory. The purpose of this paper is to present the low observable structure with curved surfaces made by fiber-reinforced composites and to show the possibility of developing omnidirectional stealth platforms for military applications. In this study, we developed a radar absorbing structures(RAS) based on a circuit analog absorber to reduce the radar cross section(RCS) of an object with curved surfaces. Firstly, the RAS with a periodic square patterned conducting polymer layer was designed and simulated using a commercial 3-D electromagnetic field analysis program. Secondly, the designed semi-cylindrical structure with low RCS was fabricated using fiber-reinforced composites and conducting polymer. To make the periodic pattern layer, acts as resistive sheet, the intrinsic conducting polymer paste containing PEDOT with a polyurethane binder was used. Finally, the radar cross section was measured to evaluate the radar absorbing performances of the fabricated RAS by the compact range facility in POSTECH.