• Title/Summary/Keyword: 복토재

Search Result 93, Processing Time 0.02 seconds

특허기술평가활용사례-리텍엔지니어스(주)

  • Korea Invention Promotion Association
    • 발명특허
    • /
    • v.30 no.10 s.352
    • /
    • pp.38-41
    • /
    • 2005
  • 산업의 발전과 함께 산업폐기물이 늘어나고 있고 이 폐기물의 처리방법 중 가장 일반적이고 많은 사례가 매립이다. 폐기물을 매립할 때 필요한 것이 복토재인데 우리나라에서 복토재로 사용이 가능한 흙은 매립장을 건설할 때 발생되는 잔토와 건설현장에서 발생되는 흙, 하천의 준설토 등이 있다. 하지만 모든 흙을 모두 복토재로 사용할 수는 없는데, 건설현장의 잔토는 건설폐기물로 분류되어 지정매립장에 매립을 해야 하고 하천 준설토는 2차 오염의 방지를 위해 복토재로 사용할 수 없도록 법으로 금지되어 있기 때문이다. 이런 규제는 복토재용 흙을 안정적으로 확보할 수 없게 하고 수요만큼의 공급이 불가능하게 되어 불법적인 사용 가능성을 암묵적으로 인정하는 현실로 이어졌다.

  • PDF

A Study on Cover Material of Waste Landfill with Engineered Stone Sludge (폐기물 매립지의 복토재로 엔지니어드스톤 슬러지의 활용에 관한 연구)

  • Kim, Youngtae;Ahn, Kwangkuk;Kang, Hongsig
    • Journal of the Korean GEO-environmental Society
    • /
    • v.23 no.7
    • /
    • pp.5-10
    • /
    • 2022
  • The industrial waste is becoming a big problem in the aspect of spatial and environmental in domestic and international. Therefore, the waste reduction and recycling policy has been being implemented as a way to solve this problem. The engineered stone sludge, which is waste, is generated duing the engineered stone production process. since engineered stone sludge is mostly treated by landfill, an increase in the amount of the sludge leads to an increase in landfill sites and treatment costs. therefore, there is a need for a method of resourcization with engineered stone sludge. So, laboratory tests (Plastic and liquid limits, compaction, unconfined compression and permeability test) were conducted to confirm the possibility of using engineered stone sludge mixed with weathered granite soil as a cover material for landfill in this study. The result shows that the mixed soil material with less that 62.5% of engineered stone sludge can be used as a cover material for landfill.

Sensitivity Analysis of the Leachate Level of a Landfill to Hydraulic Properties of Cover Soil and Waste (매립장의 복토재와 폐기물 수리특성에 대한 침출수위의 민감도 분석)

  • 주완호;장연수;김용인
    • Journal of the Korean Society of Groundwater Environment
    • /
    • v.5 no.2
    • /
    • pp.110-115
    • /
    • 1998
  • In this paper, the sensitivity of the leachate level is analyzed using the program HELP to reduce the high leachate level on the landfill. Hydraulic parameters analyzed were porosity, field capacity, wilting point and initial water content of cover soil and waste. Also, the influence of the difference between the initial water content and the field capacity on the leachate level in the landfill was analyzed. The results of the sensitivity analysis show that the increase of the porosity and the wilting point decreases the leachate level, while the increase of the field capacity and the hydraulic conductivity increases the leachate level. Major parameters to the change of the leachate level were the hydraulic conductivity in the case of cover soil and the porosity, the field capacity and the initial water content in the case of waste.

  • PDF

Reuse of Water Treatment Sludge as Liner and Cover Materials in Waste Landfills (폐기물 매립장의 차수재 및 복토재로서 하수 슬러지 재활용)

  • 이용수;정하익
    • Geotechnical Engineering
    • /
    • v.13 no.4
    • /
    • pp.5-12
    • /
    • 1997
  • The potentiality of water treatment sludge as the alternative liner and cover materials in landfills is investigated. A series of tests were performed on sludge admixtures to examine their compaction, compressive strength, leaching, hydraulic conductivity characterisit its and the compatibility with representative leachate within landfills. Results from the tests show that low hydraulic conductivity can berachieved with sufficient stabilizer contents and curing. It is recognized that the hydrauac conductivity decreases with increasing bentonite content and the percentage of bentonite needed to make the hydrauic conductivity below 1$\times$10-7cm/ sec was 40% for water treatment sludge. It was found that the effect of the municipal waste leachate on the hydraulic conductivity of the admixtures is negligible.

  • PDF

Evaluation on the Effect of Coal-ash as Landfill Cover Material of Mono-Layer Cover System through the Field Scale Test (현장 실험을 통한 단층형 매립복토시스템의 복토재로서 석탄회의 효과 검토)

  • Yun, Sung-Wook;Kang, Sin-Il;Jin, Hae-Geun;Kim, Pil-Joo;Kim, Soon-Oh;Yu, Chan
    • Journal of the Korean Geotechnical Society
    • /
    • v.26 no.7
    • /
    • pp.81-91
    • /
    • 2010
  • In order to investigate the applicability and suitability of the coal ash (bottom ash) to landfill final cover, field pilot-scale lysimeter experiments were carried out. The mixture of loamy soil, bottom ash, and construction waste was placed as a cover material in lysimeter ($2m{\times}6m{\times}1.2m$) which were constructed with cement brick, and then volumetric water contents, pF value, and the quantity of runoff and seepage of treatment boxes filled with the mixture of loamy soil and the industrial by-products were monitored from July, 2007 to february, 2008. Among the cases tested, consequently, the case containing the mixture of bottom ash and loamy soil was most effective in plant growth and water retention ability.

Leachate Behavior within the Domestic Seashore Landfill(I)- Hydrogeologic Property Identification through In-situ Tests - (폐기물 매립지 내에서의 침출수 거동(I)- 현장조사를 통한 수리지반 특성 -)

  • 장연수;조용주
    • Journal of the Korean Geotechnical Society
    • /
    • v.15 no.6
    • /
    • pp.99-109
    • /
    • 1999
  • In the case of domestic general waste landfills, cumulated leachate level is often formed in the landfill due to the waste of high moisture content and it becomes important to characterize the hydraulic properties of the disposed waste. Although many hydrologic studies have been peformed for leachate barriers and pheriperal subsurface environments, few studies have been done to investigate the hydraulic property of the disposed waste and cover soils and to analyse the leachate flow behavior within landfills. In this paper, the geotechnical properties of the waste and buried cover soils are identified through the field experiment including pumping and slug tests. The results of various tests show that the field density of the cover soils is somewhat higher than the maximum laboratory density of cover soils and the vertical flow of leachate and gas in the landfill is prevented by the buried cover soils. The hydraulic conductivities of field pumping test and slug tests are well matched and stayed in the range of hydraulic conductivities of well compacted wastes in the literature.

  • PDF

The Evaluation on the Environmental Effect of Coal-Ash and Phosphogypsum as the Evapotranspiration Final Cover Material (증발산 원리를 이용한 매립장 최종 복토공법의 복토재로서 석탄재와 인산석고의 환경적 영향 평가)

  • Yu, Chan;Yang, Kee-Sok
    • Journal of the Korean GEO-environmental Society
    • /
    • v.6 no.1
    • /
    • pp.15-21
    • /
    • 2005
  • In this study, the utilization of coal-ash and phosphogypsum was considered as the evapotranspiration final landfill cover(ET cover) material. Cover material considered was the mixture of the weathered granite soil, coal-ash and phosphogypsum and so we sequentially performed the leaching test, column test and field model test to investigate the environmental effects of mixtures of coal-ash and phosphogypsum. In the leaching test, all materials had lower heavy metal concentration than the regulated threshold values. The column test and the review of related regulations were carried out to determine the optimum mixing ratio(OMR) and OMR was soil(4):coal-ash(1): phosphogypsum(1) on the volume base, which was applied to field model test. Field model tests were continued from February to June, 2004 in the soil box that was constructed with cement block. It was verified that coal-ash and phospogypsum mixed with soil was safe environmentally and the mixture of both wastes could improve the water retention capacity of cover materials.

  • PDF

해양 저질환경 개선을 위한 제강 슬래그의 복토재 활용 연구(II)

  • 박기영;박헌우;박광석;전희동;정시현
    • Proceedings of the Korean Society of Fisheries Technology Conference
    • /
    • 2001.05a
    • /
    • pp.348-349
    • /
    • 2001
  • 본 연구의 목적은 반폐쇄형 오염 수역을 포함해 특히 양식장내 퇴적층과 같이 오염이 상당히 진행된 해저 퇴적물을 효율적, 경제적으로 정화하기 위해 제철 공정에서 나오는 부산물인 제강 슬래그를 복토재로 활용하는 데에 있다. 오염된 퇴적물로부터 대량으로 용출되는 황화수소와 인산염 둥은 양식 생물에 직ㆍ간접적으로 악영향을 미칠 수 있으며, 해역내 부영양화의 주요한 원인이 되는 것으로 알려져 있다. (중략)

  • PDF