• 제목/요약/키워드: 복원모델

Search Result 737, Processing Time 0.079 seconds

Distribution Status and Age Structure of Abies holophylla Population in Sudo-Am Temple Forest (수도암 사찰림의 전나무 개체군 분포현황과 연령구조분석)

  • Choi, Byoung-Ki;Lee, Chang-Woo
    • Korean Journal of Ecology and Environment
    • /
    • v.47 no.3
    • /
    • pp.160-166
    • /
    • 2014
  • This study was aimed at looking into the distribution status and age structure of Abies holophylla population in Sudo-Am temple forest. It was found that a total of 302 individuals of Abies holophylla existed which were more than 2m in height within the study area. Furthermore the population size is one of the largest in the southern region of Korea. The CBH of Abies holophylla ranged from 1.5 cm to 500.8 cm. Age structure of Abies holophylla looks like a gourd-shaped bottle. This means that they have an unstable structure status and do not survive very long. This status results from a variety of factors including, vegetation succession, anthropogenic activities, and global warming. The environmental characteristics of Abies holophylla population was $931{\pm}64.5m$ in mean altitude, $19.2{\pm}8.7^{\circ}$ in mean slope in the northeastern and southeastern area of the slope direction, and $1,324,323{\pm}174,459wh\;m^{-2}$ in average of direct normal irradiation. Among the site environmental factors, the significant ones which influence the potential habitat for Abies holophylla distribution were chosen using the MaxEnt model. According to the results of this study, altitude and slope were found as the important factors. The average value of environmental conditions by ROC analysis were altitude 903.2 m, slope $20.04^{\circ}$, irradiation $1,352.248wh\;m^{-2}$, and the southeastern aspect.

Disaster Risk Assessment using QRE Assessment Tool in Disaster Cases in Seoul Metropolitan (서울시 재난 사례 QRE 평가도구를 활용한 재난 위험도 평가)

  • Kim, Yong Moon;Lee, Tae Shik
    • Journal of Korean Society of Disaster and Security
    • /
    • v.12 no.1
    • /
    • pp.11-21
    • /
    • 2019
  • This study assessed the risk of disaster by using QRE(Quick Risk Estimation - UNISDR Roll Model City of Basic Evaluation Tool) tools for three natural disasters and sixteen social disasters managed by the Seoul Metropolitan Government. The criteria for selecting 19 disaster types in Seoul are limited to disasters that occur frequently in the past and cause a lot of damage to people and property if they occur. We also considered disasters that are likely to occur in the future. According to the results of the QRE tools for disaster type in Seoul, the most dangerous type of disaster among the Seoul city disasters was "suicide accident" and "deterioration of air quality". Suicide risk is high and it is not easy to take measures against the economic and psychological problems of suicide. This corresponds to the Risk ratings(Likelihood ranking score & Severity rating) "M6". In contrast, disaster types with low risk during the disaster managed by the city of Seoul were analyzed as flooding, water leakage, and water pollution accidents. In the case of floods, there is a high likelihood of disaster such as localized heavy rains and typhoons. However, the city of Seoul has established a comprehensive plan to reduce floods and water every five years. This aspect is considered to be appropriate for disaster prevention preparedness and relatively low disaster risk was analyzed. This corresponds to the disaster Risk ratings(Likelihood ranking score & Severity rating) "VL1". Finally, the QRE tool provides the city's leaders and disaster managers with a quick reference to the risk of a disaster so that decisions can be made faster. In addition, the risk assessment using the QRE tool has helped many aspects such as systematic evaluation of resilience against the city's safety risks, basic data on future investment plans, and disaster response.

Label Embedding for Improving Classification Accuracy UsingAutoEncoderwithSkip-Connections (다중 레이블 분류의 정확도 향상을 위한 스킵 연결 오토인코더 기반 레이블 임베딩 방법론)

  • Kim, Museong;Kim, Namgyu
    • Journal of Intelligence and Information Systems
    • /
    • v.27 no.3
    • /
    • pp.175-197
    • /
    • 2021
  • Recently, with the development of deep learning technology, research on unstructured data analysis is being actively conducted, and it is showing remarkable results in various fields such as classification, summary, and generation. Among various text analysis fields, text classification is the most widely used technology in academia and industry. Text classification includes binary class classification with one label among two classes, multi-class classification with one label among several classes, and multi-label classification with multiple labels among several classes. In particular, multi-label classification requires a different training method from binary class classification and multi-class classification because of the characteristic of having multiple labels. In addition, since the number of labels to be predicted increases as the number of labels and classes increases, there is a limitation in that performance improvement is difficult due to an increase in prediction difficulty. To overcome these limitations, (i) compressing the initially given high-dimensional label space into a low-dimensional latent label space, (ii) after performing training to predict the compressed label, (iii) restoring the predicted label to the high-dimensional original label space, research on label embedding is being actively conducted. Typical label embedding techniques include Principal Label Space Transformation (PLST), Multi-Label Classification via Boolean Matrix Decomposition (MLC-BMaD), and Bayesian Multi-Label Compressed Sensing (BML-CS). However, since these techniques consider only the linear relationship between labels or compress the labels by random transformation, it is difficult to understand the non-linear relationship between labels, so there is a limitation in that it is not possible to create a latent label space sufficiently containing the information of the original label. Recently, there have been increasing attempts to improve performance by applying deep learning technology to label embedding. Label embedding using an autoencoder, a deep learning model that is effective for data compression and restoration, is representative. However, the traditional autoencoder-based label embedding has a limitation in that a large amount of information loss occurs when compressing a high-dimensional label space having a myriad of classes into a low-dimensional latent label space. This can be found in the gradient loss problem that occurs in the backpropagation process of learning. To solve this problem, skip connection was devised, and by adding the input of the layer to the output to prevent gradient loss during backpropagation, efficient learning is possible even when the layer is deep. Skip connection is mainly used for image feature extraction in convolutional neural networks, but studies using skip connection in autoencoder or label embedding process are still lacking. Therefore, in this study, we propose an autoencoder-based label embedding methodology in which skip connections are added to each of the encoder and decoder to form a low-dimensional latent label space that reflects the information of the high-dimensional label space well. In addition, the proposed methodology was applied to actual paper keywords to derive the high-dimensional keyword label space and the low-dimensional latent label space. Using this, we conducted an experiment to predict the compressed keyword vector existing in the latent label space from the paper abstract and to evaluate the multi-label classification by restoring the predicted keyword vector back to the original label space. As a result, the accuracy, precision, recall, and F1 score used as performance indicators showed far superior performance in multi-label classification based on the proposed methodology compared to traditional multi-label classification methods. This can be seen that the low-dimensional latent label space derived through the proposed methodology well reflected the information of the high-dimensional label space, which ultimately led to the improvement of the performance of the multi-label classification itself. In addition, the utility of the proposed methodology was identified by comparing the performance of the proposed methodology according to the domain characteristics and the number of dimensions of the latent label space.

Potential Habitat Area Based on Natural Environment Survey Time Series Data for Conservation of Otter (Lutra lutra) - Case Study for Gangwon-do - (수달의 보전을 위한 전국자연환경조사 시계열 자료 기반 잠재 서식적합지역 분석 - 강원도를 대상으로 -)

  • Kim, Ho Gul;Mo, Yongwon
    • Korean Journal of Environment and Ecology
    • /
    • v.35 no.1
    • /
    • pp.24-36
    • /
    • 2021
  • Countries around the world, including the Republic of Korea, are participating in efforts to preserve biodiversity. Concerning species, in particular, studies that aim to find potential habitats and establish conservation plans by conducting habitat suitability analysis for specific species are actively ongoing. However, few studies on mid- to long-term changes in suitable habitat areas are based on accumulated information. Therefore, this study aimed to analyze the time-series changes in the habitat suitable area and examine the otters' changing pattern (Lutra lutra) designated as Level 1 endangered wildlife in Gangwon-do. The time-series change analysis used the data on otter species' presence points from the 2nd, 3rd, and 4th national natural environment surveys conducted for about 20 years. Moreover, it utilized the land cover map consistent with the survey period to create environmental variables to reflect each survey period's habitat environment. The suitable habitat area analysis used the MaxEnt model that can run based only on the species presence information, and it has been proven to be reliable by previous studies. The study derived the habitat suitability map for otters in each survey period, and it showed a tendency that habitats were distributed around rivers. Comparing the response curves of the environmental variables derived from the modeling identified the characteristics of the habitat favored by otters. The examination of habitats' change by survey period showed that the habitats based on the 2nd National Natural Environment Survey had the widest distribution. The habitats of the 3rd and 4th surveys showed a tendency of decrease in area. Moreover, the study aggregated the analysis results of the three survey periods and analyzed and categorized the habitat's changing pattern. The type of change proposed different conservation plans, such as field surveys, monitoring, protected area establishment, and restoration plan. This study is significant because it produced a comprehensive analysis map that showed the time-series changes of the location and area of the otter habitat and proposed a conservation plan that is necessary according to the type of habitat change by region. We believe that the method proposed in this study and its results can be used as reference data for establishing a habitat conservation and management plan in the future.

Prediction of Acer pictum subsp. mono Distribution using Bioclimatic Predictor Based on SSP Scenario Detailed Data (SSP 시나리오 상세화 자료 기반 생태기후지수를 활용한 고로쇠나무 분포 예측)

  • Kim, Whee-Moon;Kim, Chaeyoung;Cho, Jaepil;Hur, Jina;Song, Wonkyong
    • Ecology and Resilient Infrastructure
    • /
    • v.9 no.3
    • /
    • pp.163-173
    • /
    • 2022
  • Climate change is a key factor that greatly influences changes in the biological seasons and geographical distribution of species. In the ecological field, the BioClimatic predictor (BioClim), which is most related to the physiological characteristics of organisms, is used for vulnerability assessment. However, BioClim values are not provided other than the future period climate average values for each GCM for the Shared Socio-economic Pathways (SSPs) scenario. In this study, BioClim data suitable for domestic conditions was produced using 1 km resolution SSPs scenario detailed data produced by Rural Development Administration, and based on the data, a species distribution model was applied to mainly grow in southern, Gyeongsangbuk-do, Gangwon-do and humid regions. Appropriate habitat distributions were predicted every 30 years for the base years (1981 - 2010) and future years (2011 - 2100) of the Acer pictum subsp. mono. Acer pictum subsp. mono appearance data were collected from a total of 819 points through the national natural environment survey data. In order to improve the performance of the MaxEnt model, the parameters of the model (LQH-1.5) were optimized, and 7 detailed biolicm indices and 5 topographical indices were applied to the MaxEnt model. Drainage, Annual Precipitation (Bio12), and Slope significantly contributed to the distribution of Acer pictum subsp. mono in Korea. As a result of reflecting the growth characteristics that favor moist and fertile soil, the influence of climatic factors was not significant. Accordingly, in the base year, the suitable habitat for a high level of Acer pictum subsp. mono is 3.41% of the area of Korea, and in the near future (2011 - 2040) and far future (2071 - 2100), SSP1-2.6 accounts for 0.01% and 0.02%, gradually decreasing. However, in SSP5-8.5, it was 0.01% and 0.72%, respectively, showing a tendency to decrease in the near future compared to the base year, but to gradually increase toward the far future. This study confirms the future distribution of vegetation that is more easily adapted to climate change, and has significance as a basic study that can be used for future forest restoration of climate change-adapted species.

The Accuracy Evaluation of Digital Elevation Models for Forest Areas Produced Under Different Filtering Conditions of Airborne LiDAR Raw Data (항공 LiDAR 원자료 필터링 조건에 따른 산림지역 수치표고모형 정확도 평가)

  • Cho, Seungwan;Choi, Hyung Tae;Park, Joowon
    • Journal of agriculture & life science
    • /
    • v.50 no.3
    • /
    • pp.1-11
    • /
    • 2016
  • With increasing interest, there have been studies on LiDAR(Light Detection And Ranging)-based DEM(Digital Elevation Model) to acquire three dimensional topographic information. For producing LiDAR DEM with better accuracy, Filtering process is crucial, where only surface reflected LiDAR points are left to construct DEM while non-surface reflected LiDAR points need to be removed from the raw LiDAR data. In particular, the changes of input values for filtering algorithm-constructing parameters are supposed to produce different products. Therefore, this study is aimed to contribute to better understanding the effects of the changes of the levels of GroundFilter Algrothm's Mean parameter(GFmn) embedded in FUSION software on the accuracy of the LiDAR DEM products, using LiDAR data collected for Hwacheon, Yangju, Gyeongsan and Jangheung watershed experimental area. The effect of GFmn level changes on the products' accuracy is estimated by measuring and comparing the residuals between the elevations at the same locations of a field and different GFmn level-produced LiDAR DEM sample points. In order to test whether there are any differences among the five GFmn levels; 1, 3, 5, 7 and 9, One-way ANOVA is conducted. In result of One-way ANOVA test, it is found that the change in GFmn level significantly affects the accuracy (F-value: 4.915, p<0.01). After finding significance of the GFmn level effect, Tukey HSD test is also conducted as a Post hoc test for grouping levels by the significant differences. In result, GFmn levels are divided into two subsets ('7, 5, 9, 3' vs. '1'). From the observation of the residuals of each individual level, it is possible to say that LiDAR DEM is generated most accurately when GFmn is given as 7. Through this study, the most desirable parameter value can be suggested to produce filtered LiDAR DEM data which can provide the most accurate elevation information.

Trophic Level and Ecological Niche Assessment of Two Sympatric Freshwater Fish, Microphysogobio rapidus and Microphysogobio yaluensis Using Stable Isotope Analysis (안정동위원소 분석을 활용한 멸종위기종 여울마자와 동서종 돌마자의 영양단계 및 생태적 지위 평가)

  • Dae-Hee Lee;Hye-Ji Oh;Yerim Choi;Geun-Hyeok Hong;InHyuck Baek;Keun-Sik Kim;Kwang-Hyeon Chang;Ju-Duk Yoon
    • Korean Journal of Ecology and Environment
    • /
    • v.57 no.1
    • /
    • pp.39-50
    • /
    • 2024
  • In ecosystems within limited resources, interspecific competition is inevitable, often leading to the competitive exclusion of inferior species. This study aims to provide foundational information for the conservation and restoration management of Microphysogobio rapidus by evaluating species' ecological response to biological factors within its habitat. To understand this relationship, we collected food web organisms from site where M. rapidus coexist with Microphysogobio yaluensis, a specie ecologically similar to M. rapidus, and evaluated the trophic levels (TL), isotopic niche space (INS), and the overlap of INS among fishes within the habitat using stable isotope analysis. Our analysis revealed that the M. rapidus exhibited a higher TL than M. yaluensis, with TL of 2.6 and 2.4, respectively. M. yaluensis exhibited a broad INS, significantly influencing the feeding characteristics of most fish. Conversely, M. rapidus showed a narrow INS and asymmetric feeding relationships with other species, in habitats with high competition levels. This feeding characteristics of M. rapidus indicate that the increase in competitors sharing the similar resources lead to a decrease in available resources and, consequently, is expected to result in a decrease in their density.