• Title/Summary/Keyword: 복사학적 보정

Search Result 8, Processing Time 0.025 seconds

Radiometric Correction Algorithm for KITSAT-3 Images (우리별 3호 영상의 복사학적 보정 알고리즘)

  • Shin, Dongseok;Kwak, Sunghee;Kim, Tag-Gon
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.2 no.2
    • /
    • pp.9-14
    • /
    • 1999
  • This paper describes an algorithm for the correction of major radiometric errors shown in MEIS (Multi-spectral Earth Imaging System) images on board KITSAT-3. MEIS images contain various radiometric errors as also shown in the images obtained from other remote sensing sensors. This paper introduces the two major radiometric error sources shown in MEIS images and the corresponding correction algorithm. The proposed algorithm was integrated to an operational preprocessing software and validated by applying the algorithm to several tens of MEIS images. This algorithm will therefore applied operationally to raw MEIS images before they are distributed to users.

  • PDF

Validation of Net Radiation Measured from Fluxtower Based on Eddy Covariance Method: Case Study in Seolmacheon and Cheongmicheon Watersheds (에디공분산 방법 기반의 플럭스 타워 순 복사에너지 검증: 설마천, 청미천 유역)

  • Byun, Kyuhyun;Shin, Jiyae;Lee, Yeon-Kil;Choi, Minha
    • Journal of Korea Water Resources Association
    • /
    • v.46 no.2
    • /
    • pp.111-122
    • /
    • 2013
  • The necessity of clear understanding of water and energy cycles has been attracted recently due to the climate change. The micrometeorological flux tower networks play a role of cornerstone of the hydrological and ecological analyses. Although the eddy covariance techniques used for flux tower have been proven to be applicable for estimation of latent heat flux, the raw data are often underestimated and needs to be corrected. Among several methods, the Bowen ratio is recognized as the most useful method in which the net radiation and other flux data (Ground heat flux, Sensible heat flux) are used and needed to be validated. In this study, in order to validate the net radiation from flux tower in Seolmacheon and Cheongmicheon watersheds, we compare it with two version of calculated net radiation: (1) FAO 56 Daily net radiation proposed by Allen et al. (1998). (2) Instantaneous net radiation proposed by Bastiaanssen (1995). The results showed that the net radiation from the flux data had similar tendency with those calculated based on physical theory. In addition, after it was applied to Bowen ratio method, the corrected latent heat flux was considerably improved with making the energy balance much more closed.

Correction of Radiometric Distortion Caused by Geometric Property in SAR image using SAR Simulation (SAR영상의 모의제작에 의한 기하학적 복사왜곡의 보정)

  • Jeong, Soo;Yeu, Bock-Mo
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.16 no.1
    • /
    • pp.1-7
    • /
    • 1998
  • SAR data can be achieved independently of weather conditions or sun illumination which is main limitation of electro-optical sensor to get image. The information from imagery can be more enlarged using Shh data be-cause SAR data offers different information from electro-optical sensor. SAR data contains various distortions caused by the radar specification and geometric properties of data acquisition. These distortions should be removed to get the information with acceptable accuracy. In this study, we aimed to correct the radiometric distortion in Shh image caused by the geometric property of the object. For this purpose, we simulated the SAR image by modelling of the power of return beam which is variable according to the geometric configuration between SAR antenna and ground object. Dividing the SAR image by the simulation image, then, we can get the radiometrically corrected image. As a result of this study, we could minimize the effect of radiometric distortion in achieving some qualitative information from SAR image for the related field, such as Geospatial Information System.

  • PDF

Extraction and Measurements of Abdominal Muscles in Ultrasound Images Using Morphological Information of Abdominal Fasia (복부 근막의 형태학적 정보를 이용한 초음파 영상에서의 복부 근육 추출 및 측정)

  • Eom, Do-Sung;Lee, Hae-Jung;Shin, Sang-Ho;Kim, Kwang-Baek
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2012.01a
    • /
    • pp.73-75
    • /
    • 2012
  • 본 논문에서는 복부 초음파 영상에서 근육 영역의 명암 대비를 강조하기 위해서 Multiple 연산을 적용한 후, 명암 대비가 강조된 영상에서 수직 방향의 명암도가 200 이상인 픽셀들에 대해 퍼지 기법에 적용하여 이진화한다. 이진화된 영상에서 피부층과 외복사근 사이에 존재하는 피하지방을 추출하기 위해 Thick-Search 방법을 적용하여 피부층과 외복사근을 추출한 후, 피부층과 외복사근의 사이에 Up-Down Search 방법을 적용하여 피하지방층을 추출한다. 피하지방층이 추출된 영상에서 근막의 형태학적 정보를 이용하여 근막을 추출한다. 추출된 근막 사이에 대해 Up-Down Search 방법을 적용하여 근육의 후보 영역을 추출한 후, 근육의 형태학적 정보를 이용하여 최종적인 근육 층을 추출한다. 추출된 근육의 경계선을 Monotone Cubic Hermite 보간법을 이용하여 근육의 경계선을 보정한 후, 최소자승법을 이용하여 근육의 두께를 측정한다. 제안된 방법을 복부 초음파 영상에 적용하여 근막 및 근육 영역을 추출한 결과, 기존의 근육 추출 방법보다 정확하게 추출되었고, 근육의 두께 측정 결과도 전문의가 육안으로 측정한 결과와 근사한 것을 확인할 수 있었다.

  • PDF

A Statistical Downscaling of Climate Change Scenarios Using Deep Convolutional Neural Networks (합성곱 신경망(CNN)기반 한반도 지역 대상 기후 변화 시나리오의 통계학적 상세화 기법 개발)

  • Kim, Yun-Sung;Uranchimeg, Sumiya;Yu, Jae-Ung;Cho, Hemie;Kwon, Hyun-Han
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2022.05a
    • /
    • pp.326-326
    • /
    • 2022
  • 기후 변화 시나리오는 온실가스, 에어로졸, 토지이용 변화 등 인위적인 원인으로 발생한 복사강제력 변화를 지구시스템 모델에 적용하여 산출한 미래 기후 전망정보(기온, 강수량, 바람, 습도 등)를 생산하는데 활용된다. 또한, 미래에 기후변화로 인한 영향을 평가하고 피해를 최소화하는데 활용할 수 있는 선제적인 정보로 활용된다. GCM과 RCM은 구조 및 모수화 과정, 불확실성 등의 한계로 인하여 상대적으로 큰 시공간적 규모를 가지며, 실제 관측된 기상인자들을 재현하는데 시공간적 차이 즉 편의(bias)가 발생하며. 실제 관측된 기상인자의 시간적 변화 특성을 재현하지 못하는 문제점을 내재하고 있는 것으로 보고되고 있다. 이러한 점에서 기후모델에서 생산된 정보를 수문학적으로 적용하기 위해서는 시공간적 상세화와 편의 보정은 필수적이다. 본 연구에서는 관측자료를 사용하여 재해석 자료를 편의보정 한 뒤. 기후 변화 시나리오를 합성곱 신경망(CNN)을 기반으로 상세화 과정을 진행하여 고해상도 자료를 생산하였으며, CNN 기반 상세화 기법 적용성은 지상 관측자료 대상으로 평가하였다.

  • PDF

Current Status of Hyperspectral Data Processing Techniques for Monitoring Coastal Waters (연안해역 모니터링을 위한 초분광영상 처리기법 현황)

  • Kim, Sun-Hwa;Yang, Chan-Su
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.18 no.1
    • /
    • pp.48-63
    • /
    • 2015
  • In this study, we introduce various hyperspectral data processing techniques for the monitoring of shallow and coastal waters to enlarge the application range and to improve the accuracy of the end results in Korea. Unlike land, more accurate atmospheric correction is needed in coastal region showing relatively low reflectance in visible wavelengths. Sun-glint which occurs due to a geometry of sun-sea surface-sensor is another issue for the data processing in the ocean application of hyperspectal imagery. After the preprocessing of the hyperspectral data, a semi-analytical algorithm based on a radiative transfer model and a spectral library can be used for bathymetry mapping in coastal area, type classification and status monitoring of benthos or substrate classification. In general, semi-analytical algorithms using spectral information obtained from hyperspectral imagey shows higher accuracy than an empirical method using multispectral data. The water depth and quality are constraint factors in the ocean application of optical data. Although a radiative transfer model suggests the theoretical limit of about 25m in depth for bathymetry and bottom classification, hyperspectral data have been used practically at depths of up to 10 m in shallow and coastal waters. It means we have to focus on the maximum depth of water and water quality conditions that affect the coastal applicability of hyperspectral data, and to define the spectral library of coastal waters to classify the types of benthos and substrates.

Comparison of Carbon Budget between Rice-barley Double Cropping and Rice Mono Cropping Field in Gimje, South Korea (국내 벼-보리 이모작지와 벼 단작지의 탄소수지 비교)

  • Shim, Kyo-Moon;Min, Sung-Hyun;Kim, Yong-Seok;Jung, Myung-Pyo;Choi, In-Tae;Kang, Kee-Kyung
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.18 no.4
    • /
    • pp.337-347
    • /
    • 2016
  • Carbon dioxide ($CO_2$) and methane ($CH_4$) were measured in a rice-barley double cropping and rice mono cropping paddy fields, which are located in the southwestern coast of Korea, over a one-year period. Net ecosystems $CO_2$ exchange (NEE) and ecosystem respiration (Re) were estimated by the eddy covariance (EC) method, and an automatic open/close chamber (AOCC) method was used to measure $CH_4$ fluxes. Environmental factors (solar radiation, air temperature, precipitation etc.) were also measured along with fluxes. After the quality control and gap-filling, the observed fluxes were analyzed. As a result, NEE was -603.0 and $-471.5g\;C\;m^{-2}\;yr^{-1}$ in rice-barley double cropping and rice mono cropping paddy field, respectively. $CH_4$ emissions increased during the course of flooded days and were similar in two cropping paddy field. Accoding to rough results considering only fluxes of $CO_2$ and $CH_4$, it was estimated that the carbon absorbation in rice-barley double cropping paddy field was higher than that in rice mono cropping paddy field by $128.9g\;C\;m^{-2}\;yr^{-1}$.

Comparative Analysis of Pre-processing Method for Standardization of Multi-spectral Drone Images (다중분광 드론영상의 표준화를 위한 전처리 기법 비교·분석)

  • Ahn, Ho-Yong;Ryu, Jae-Hyun;Na, Sang-il;Lee, Byung-mo;Kim, Min-ji;Lee, Kyung-do
    • Korean Journal of Remote Sensing
    • /
    • v.38 no.6_1
    • /
    • pp.1219-1230
    • /
    • 2022
  • Multi-spectral drones in agricultural observation require quantitative and reliable data based on physical quantities such as radiance or reflectance in crop yield analysis. In the case of remote sensing data for crop monitoring, images taken in the same area over time-series are required. In particular, biophysical data such as leaf area index or chlorophyll are analyzed through time-series data under the same reference, it can be directly analyzed. So, comparable reflectance data are required. Orthoimagery using drone images, the entire image pixel values are distorted or there is a difference in pixel values at the junction boundary, which limits accurate physical quantity estimation. In this study, reflectance and vegetation index based on drone images were calculated according to the correction method of drone images for time-series crop monitoring. comparing the drone reflectance and ground measured data for spectral characteristics analysis.