고체 추진제를 사용하는 추진 시스템을 개발하는데 가장 커다란 문제로 인식되고 있는 것은 추진제의 연소 특성을 이해하는 일이다. 그 중에서도 연소실의 압력 진동과 추진제 벽면으로 흡수되는 복사 열전달에 의한 연소율(burning rate)의 변화로 인하여 발생하는 연소 불안정에 대한 이해는 아직도 완전히 규명되지 않고 있다. 고체 추진제의 연소 불안정에 대한 이론적 해석은 준-정상 1차원 해석(Quasi-Steady Homogeneous One-Dimension) 방법에 의하여 단순화된 지배방정식을 해석하는 것이 일반적으로 잘 알려져 있는 방법이다. 이 가정은 고체 추진제가 연수되는 영역을 두께가 매우 얇은 영역의 표면반응영역(surface reaction layer)과 화학반응이 없는 응축상태영역(condensed phase zone) 그리고 기체상태의 연료와 화염이 존재하는 기체상태영역(gas phase zone) 등의 3영역으로 구분하며, 기체상태영역에서 발생하는 교란에 대한 응축상태영역의 반응시간 크기(response time scale)가 매우 크기 때문에 응축상태영역의 반응은 준 정상적으로 일어난다고 가정하는 것이다.그러나, 연소실의 온도가 $3000^{\circ}K$ 정도의 높은 온도이어서 복사 열전달에 의한 고체 추진제의 가열이 중요한 열전달 방법으로 작용하게 되므로 이를 무시한 이론적 해석은 물리적인 중요성이 약하여질 수밖에 없다. 본 연구에서는 기체영역으로부터 전달되는 복사 열전달은 투명(transparent)한 표면반응영역을 통과하여 응축상태영역에서 모두 흡수되며 추진제 표면에서의 복사열방출(emission)을 고려하였다. 또한 연소불안정 현상을 해석하기 위하여 표면반응영역에서의 경계조건은 선형교란량으로 대치하는 Zn(Zeldovich-Novozhilov) 방법을 사용하였다. 이 방법은 기체상태영역에 대한 구체적인 해석없이도 연소불안정 현상을 해석할 수 있는 장점이 잇다. 즉 응축상태영역에서의 연소율과 표면온도는 각각 기체영역으로부터 전달되는 온도구배와 연소압력, 그리고 복사 열전달의 함수관계이므로 선형교란에 의한 추진제표면에서의 교란경계조건을 얻을 수 잇으며, 응축영역의 교란지배방정식과 함께 사용하여 압력교란과 복사 열전달의 교란에 대한 연소율의 교란 증감 여부를 판단하여 연소 불안정 현상을 해석할 수 있다.
고체 추진제 연소불안정에 관한 해석은 준-정상 1차원 해석인 QSHOD(Quasi-Steady Homogcneous One-Dimension)에 의하여 단순화된 지배방정식을 이용하여 응축영역을 해석하는 것이 일반적이다. 이때 외부교란에 대한 기체영역과 표면반응 영역의 응답은 화학반응이 발생하지 않는 고체영역의 응답에 비하여 매우 빠르므로 준-정상적인 거동을 한다. 본 연구에서는 복사열전달에 의한 열속(heat flux)이 고체 추진제의 표면에 존재하며 이 중의 일부가 고체영역에서 흡수될 때 표면에서의 선형교란을 고려한 ZN(Zeldovich-Novozhilov) 방법을 이용하여 연소불안정 현상을 이론적으로 해석하여 연소불안정 현상을 설명할 수 있는 연소 응답함수를 구하였다. 본 연구에서 얻어진 응답함수를 해석함으로써, Zebrowski등$^{(5)}$ 에 의하여 얻어진 복사열 교란에 대한 응답함수가 과소 평가된 응답특성을 나타내고 있음을 알았다. 또한 응답함수의 고유불안정성을 판별하는 민감계수 r과 k의 영역의 해석으로부터 SOn등$^{(6)}$ 에 의하여 밝혀진 안정 경계선의 안정한 영역보다 본 연구에서 구한 안정 경계영역이 줄어드는 경향을 보여주고 있다. 이것은 (6)에서 과소 평가된 복사열전달의 영향을 수정한 결과 때문이다.
혼합 대류 이상 유동 시스템에 부유된 슈트와 미분탄과 같은 고흡수, 방사하는 입자의 열확산적 입자이동에 대한 복사 및 부력효과를 수치적으로 검토하였다. 기체 및 입자유동의 지배방정식 들은 Euler 관점의 two-fluid model의 근간에서 수행되었으며, 에너지 보존식의 비선형 복사 생 성항은 P-1 근사방법에 의해 계산되었다. 혼합 대류 유동에서의 입자의 열확산 현상은 복사 열 전달과 커플링되며, 복사효과의 증가는 부력효과를 상대적으로 감소시켜 부력효과에 의한 입자 부착율을 완화시켰다. 복사효과가 무시될 때 Grashof 수의 증가에 따라 입자의 확산효과는 감 소되었으며, 복사효과가 함께 작용될 때 입자 부착율은 증가됨을 보였다.
본 연구에서는 복사열전달 효과를 알아보기 위해 에너지 방정식을 수치적으로 풀었으며, 그 결과를 열전달계수 및 온도의 항으로 나타내었다. 수치 해석적 모델의 검증을 위해 여러사람들이 물질전달과정 해석을 위해 사용한 나프타린 승화법(naphth- alene sublimation technique)을 이용하여 실험을 수행하였다. 또한 실험에 사용된 다공질체(ceramic blocks)의 침투율도 측정하였다.
본 논문은 수직평판 위에 형성된 층류 확산화염의 현상적인 문제를 파악하는 수치적 연구를 수행하였다. 수치적 방법으로는 Keller-box method를 사용하였다. 지배방정식은 매우 얇은 화염면 가정을 도입하여 간단화 시킬 수 있으며, 에너지와 화학성분 식은 Schvab-Zeldovich 변수를 이용하여 무차원화 하였다. 물리적 공간은 연소영역과 전파영역으로 나누었고, 복사열전달을 고려하였다. 연구의 결과, 층류확산 화염의 전형적인 현상들이 관찰되었으며, code의 신뢰성을 확인할 수 있었으며, 이를 통해 복사열손실의 영향에 따른 제반 현상들을 파악하여 비교, 분석할 수 있었다.
본 연구에서는 해석하려는 시스템의 유동 및 열전달 현상의 개념도를 Fig.1 에 나타내었다. 고체 입자는 윗부분 홈으로부터 분사되어, 선택적 투과면을 통해서 입사되는 복사열을 흡수 하며, 기체는 아래 또는 위의 홈 부분으로부터 들어와서 고체 입자와의 대류열전달로 가열이 된다. 기차게 아래 홈에서부터 분사되는 경우 대류에 의해 가열된 기체가 역성층화로 인해 부력을 받게 되어, 고체 입자의 하강 속도가 감 소할 때 입자의 체류 시간의 증가에 따른 복사열의 흡수효과에 대하여 고찰하였으며 입자의 크기, 투사 복사량, 분사속도, 입자의 질량유량 등을 파라미터로 하여 이들의 변화에 따른 영향을 규명하였다. 2-방연계를 고려한 2-방정식 모델을 구성하고 고체 입자에 대하여는 Lagrangian 방법으로 기술하였으며 수치해석에 있어 유한차분법을 도 입하고 두 상간의 상호연계는 PSI-Cell 방법을 이용하였고 복사 열유속은 2-유속 모델 (two-flux model)을 도입하여 계산하였다.
각종 노(furnace)를 포함하여 보일러, 가스터빈, 우주선 추진기구, 원자로 및 연료전지 등 고온이 열전달 문제를 다루는데 있어서 복사 열전달 연구는 매우 중요하다. 이러한 복사열전달에 대한 연구동향은 최근 복사 물성치(특히 가스에서의)를 예측하기 위한 이론 모델의 개발 및 측정분야와 복사전달 방정식의 해를 비교적 간단하게 구하기 위한 근사해법에 대한 연구로 크게 대별되고 있다. 이러한 두가지 연구방햐은 완전히 분리, 독립되어 있는 것은 아니며 서로 많은 연관성을 가지고 있다. 특히, 비회체가스(nongray gas)의 복사 성질에 대한 모델링은 근사 해법의 계산결과에 큰 영향을 미치게 되므로 가스의 복사 성질의 예측은 매우 중요한 연구 과제가 된고 있다. a Low resolution spectral modeling of water vapor is carried out by applying the weighted-sum-of-gray-gases model (WSGGM) to a narrow band. For a given narrow band, focus is placed on proper modeling of gray gas absorption coefficients vs. temeprature relation used for any solution methods for the Radiative Transfer Equation(RTE). Comparison between the modeled emissivity and the "true" emissivity obtained from a high temperatue statistical narrow band parameters is made ofr the total spectrum as well as for a few typical narrow bands. Application of the model to nonuniform gas layers is also made. Low resolution spectral intensities at the boundary are obtained for uniform, parabolic and boundary layer type temeprature profiles using the obtained for uniform, parabolic and boundary layer type temperature profiles using the obtained WSGGM's with 9 gray gases. The results are compared with the narrow band spectral intensities as obtained by a narrow band model-based code with the Curtis-Godson approximation. Good agreement is found between them. Local heat source strength and total wall heat flux are also compared for the cases of Kim et al, which again gives promising agreement.
2 차원 비직교 형상에 대해 비정렬 삼각 격자를 이용하여 복사 열전달의 역해석을 수행하였다. 본 논문에서는 확산적으로 방사 및 반사를 하는 벽면으로 이루어진 형상 내부에 흡수 및 방사, 산란하는 매질이 채워져 있는 문제를 고려하였다. 유한체적법을 사용하여 복사전달 방정식을 계산하였고 이 때 얻은 입사복사량을 역해석의 측정 데이터로 사용하였다. 벽면의 방사율을 추정하기 위해 켤레구배법을 적용하였으며, 목적 함수를 최소화하는 과정을 통해 해를 구하였다. 측정값의 측정 오차가 추정 정확도에 미치는 영향을 살펴보았고, 비정렬 격자계의 성능을 확인하기 위해 정렬 격자계를 이용하여 얻은 결과와 비교해 보았다.
고체나 액체 추진로켓에 비하여 하이브리드 추진 시스템은 작동조건의 안정성과 안전함등의 많은 장점을 가지고 있다. HTPB와 같은 고체연료는 제작 및 저장, 운송 그리고 장착상의 안정성을 가지고 있으며 하이브리드 로켓의 고체연료로의 산화제의 유입을 제어하면서 추력의 변화와 엔진내부의 연소중단과 재 점화를 용이하게 할 수 있다. 이러한 이유로 인하여 하이브리드 엔진은 좀 더 경제적인 장치로 기대를 모으고 있다. 그러나, 기존의 하이브리드 로켓 엔진은 고체 추진 로켓에 비하여 낮은 연료 regression 율과 연소효율을 가지는 단점이 있다. 이러한 단점을 해결하고 요구되어지는 추력값과 연료유량을 증가시키기 위하여 고체연료의 표면적을 증가시킬 필요가 있다. 기존의 하이브리드 엔진에서는 연료 그레인에 다수의 연소포트를 만들어 표면적을 증가시켰으나 이는 비 활용 공간의 증가와 추진제의 질량 및 체적분율의 상당한 감소를 초래한다. 지난 수십년간에 걸쳐 하이브리드 엔진에서 연료의 regression 특성 및 엔진 성능 향상을 위한 연구가 계속되어 왔으며 최근에 엔진의 체적 규제를 경감시키고 연료의 regression율을 향상시키기 위하여 선회유동을 이용하는 하이브리드 로켓 엔진들이 제안되고 있다. 이러한 선회유동을 가지는 하이브리드 로켓은 고체연료 그레인에 대하여 평행하게 유입되는 기존의 하이브리드 로켓에 비하여 고체연료 벽면에서의 대류열전달이 현저하게 증가하게 되어 아주 높은 고체연료의 regression율을 얻을 수 있는 이점이 있다. 선회유동 하이브리드 로켓의 연소과정은 고체 연료의 열분해과정, 대류 열전달, 난류 혼합, 난류와 화학반응의 상호작용, soot의 생성 및 산화과정, soot 입자 및 연소가스에 의한 복사 열전달, 연소장과 음향장의 상호작용 등의 복잡한 물리적 과정을 포함하고 있다. 이러한 물리적 과정 중 난류연소, 고체연료 벽면 근방에서의 대류 열전달 및 연소과정에서 생성되는 soot 입자로부터의 복사 열전달, 그리고 고체연료 열 분해시 표면반응들은 고체연료의 regression율에 큰 영향을 미친다. 특히 고체연료의 난류화염면의 위치와 폭, 그리고 비 예혼합 난류화염장에서 생성되는 soot의 체적분율의 예측은 난류연소모델, 열전달 모델, 그리고 regression율 모델에 의해 크게 영향을 받기 때문에 수치모델의 예측 능력 향상시키기 위하여 이러한 물리적 과정을 정확히 모델링해야 할 필요가 있다. 특히 vortex hybrid rocket내의 난류연소과정은 아래와 같은 Laminar Flamelet Model에 의해 모델링 하였다. 상세 화학반응 과정을 고려한 혼합분율 공간에서의 화염편의 화학종 및 에너지 보존 방정식은 다음과 같다. 화염편 방정식과 혼합분률과 scalar dissipation rate의 관계식을 이용하여 혼합분률과 scalar dissipation rate에 따른 모든 reactive scalar들을 구하게 된다. 이러한 화염편 방정식들을 mixture fraction space에서 이산화시켜서 얻은 비선형 대수방정식은 TWOPNT(Grcar, 1992)로 계산돼 flamelet Library에 저장되게 된다. 저장된 laminar flamelet library를 이용하여 난류화염장의 열역학 상태량 평균치는 presumed PDF approach에 의해 구해진다. 본 연구에서는 강한 선회유동을 가지는 Hybrid Rocket 연소장내의 난류와 화학반응의 상호작용을 분석하기 위하여 Laminar Flamelet Model, 화학평형모델, 그리고 Eddy Dissipation Model을 이용한 수치해석결과를 체계적으로 비교하였다. 또한 Laminar Flamelet Model과 state-of-art 물리모델들을 이용하여 선회 유동을 갖는 하이브리드 로켓 엔진의 연소 및 Soot 생성 및 산화과정을 살펴보았으며 복사 열전달이 고체 연료 표면의 regression율에 미치는 영향도 살펴보았다. 특히 swirl강도, 산화제의 유입위치 그리고 선회유동의 형성방식이 하이브리드 로켓의 연소특성 및 regression rate에 미치는 영향을 상세히 해석하였다.
We calculated dose rate using radiative transfer equations to consider radiative processes distinctly. The dose rate at Pohang(36°02'N, 129°23'E) was calculated using measured ozone and meteorological data and two-stream approximations(quadrature, Eddington, delta Eddington, PIFM(practical improved flux method), discrete ordinate, delta discrete ordinate) are used in solving equation. The purpose of this study is to determine the most compatible radiative transfer approximation for simulating the radiative and photochemical processes of atmosphere through comparision between calculated and measured values. Dose rate of the biologically effective irradiance in the region 0.28-0.32 U m showed the highest value when quadrature and Eddington was used and lower value on condition that delta scaling was applied. Correlation coefficient between dose rate at surface using radiation transfer equation and measured UV-B at Pohang was 0.78, 0.79 and 0.81 when delta Eddington, PIFM and delta discrete ordinate were used. Also, in case of above approximations were used, MBE(Mean Bias Error) was within -0.3MED/30min and RMBE(Relative Mean Bias Error) was below 10% between 1200 LST and 1400 LST Approximations which are compatible in estimating radiative process are delta Eddington, PIFM and delta discrete ordinate. Especially, in case that radiative process is considered more detail, delta discrete ordinate increased the number of stream is proper.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.