• Title/Summary/Keyword: 보행 알고리즘

Search Result 331, Processing Time 0.031 seconds

Experimental Study on Motion Generation and Control of Quadruped Robot (4 족 견마형 로봇의 동작 생성 및 제어에 관한 실험적 연구)

  • Ko, Kwang-Jin;Yu, Seung-Nam;Lee, Hee-Don;Han, Chang-Soo
    • Proceedings of the KSME Conference
    • /
    • 2007.05a
    • /
    • pp.843-848
    • /
    • 2007
  • Quadruped robot is very useful mechanism for a various area. Recently, home entertainment and military robots adapted quadruped platform and useful function have been introduced. Our goal is the development of quadruped robot locomotion for any type of ground included to sloping one and irregular terrain. This paper, as a first step, deals with design and construction of quadruped robot walking on the flat ground. The most important factor of quadruped robot is stability of locomotion. At first, we introduce the developed quadruped robot based on dynamic simulation and experimental study of general gait algorithm. Finally, propose unique locomotion proper to our mechanism. Future work of this study is the performance test and analysis on the ground of various conditions and proposes the improved mechanism and gait algorithm.

  • PDF

Walking Algorithm for Real-Time Stability of a Humanoid Robot Using Fuzzy Algorithm Under Uneven Terrain (퍼지 알고리즘을 이용한 불규칙한 지면에서 보행하는 휴머노이드 로봇의 실시간 보행 안정성 구현)

  • Cho, Hyoung-Rae;Kim, Jin-Geol
    • Proceedings of the KIEE Conference
    • /
    • 2006.10c
    • /
    • pp.205-207
    • /
    • 2006
  • Since a humanoid robot inherently suffers from instability and always risks tipping itself over, or topping to the ground, it is necessary to ensure high stability and reliability of walk. An unexpected ground condition is one of the principal factors of instability. This paper proposes a walk stabilization method consisting of a Fuzzy algorithm and geometry under uneven terrain. The ground reaction forces that are measured by the FSR sensors on the sole are used to check the ground condition and the robot posture. The effectiveness of proposed method is verified by computer simulations.

  • PDF

Autonomous Bipedal Locomotion with Evolutionary Algorithm (진화적 알고리즘을 이용한 자율적 2족 보행생성)

  • 옥수열
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2004.04a
    • /
    • pp.277-280
    • /
    • 2004
  • In the research of biomechanical engineering, robotics and neurophysiology, to clarify the mechanism of human bipedal walking is of major interest. It serves as a basis of developing several applications such as rehabilitation tools and humanoid robots Nevertheless, because of complexity of the neuronal system that Interacts with the body dynamics system to make walking movements, much is left unknown about the details of locomotion mechanism. Researchers were looking for the optimal model of the neuronal system by trials and errors. In this paper, we applied Genetic Programming to induce the model of the nervous system automatically and showed its effectiveness by simulating a human bipedal walking with the obtained model.

  • PDF

An Efficient Foot-Force Distribution Algorithm for Straight-Line Walking of Quadruped Robots with a Failed Leg (고장 난 다리가 있는 사족 보행 로봇의 평탄 직선보행을 위한 효율적인 다리 힘 배분 알고리즘)

  • Yang, Jung-Min
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.57 no.5
    • /
    • pp.896-901
    • /
    • 2008
  • This paper addresses the foot force distribution problem for quadruped robots with a failed leg. The quadruped robot has fault-tolerant straight-line gaits with one leg in locked-joint failure, and has discontinuous motion with respect to the robot body. The proposed method is operated in two folds. When the robot body stands still, we use the feature that there are always three supporting legs, and by incorporating the theory of zero-interaction force, we calculate the foot forces analytically without resort to any optimization technique. When the robot body moves, the conventional pseudo-inverse algorithm is applied to obtain the foot forces for supporting legs. Simulation results show the validity of the proposed scheme.

Auto-Detection Algorithm of Gait's Joints According to Gait's Type (보행자 타입에 따른 보행자의 관절 점 자동 추출 알고리즘)

  • Kwak, Nae-Joung;Song, Teuk-Seob
    • Journal of Korea Multimedia Society
    • /
    • v.21 no.3
    • /
    • pp.333-341
    • /
    • 2018
  • In this paper, we propose an algorithm to automatically detect gait's joints. The proposed method classifies gait's types into front gait and flank gait so as to automatically detect gait's joints. And then according to classified types, the proposed applies joint extracting algorithm to input images. Firstly, we split input images into foreground image using difference images of Hue and gray-scale image of input and background one and extract gait's object. The proposed method classifies gaits into front gait and flank gait using ratio of Face's width to torso's width. Then classified gait's type, joints are detected 10 at front gait and detected 7~8 at flank gait. The proposed method is applied to the camera's input and the result shows that the proposed method automatically extracts joints.

Development of a smart LED lighting control algorithm considering coastal environment (해안환경을 고려한 LED보안등 스마트 제어 알고리즘 개발)

  • Kim, Min;Kim, Hyun-hee;Byun, Gi-sik
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2012.10a
    • /
    • pp.938-940
    • /
    • 2012
  • 전세계적으로 친환경, 에너지 절약과 맞물려 LED조명에 대한 관심이 증대되고 있다. 특히 우리나라는 삼면이 바다와 인접해 해안 항만 환경에 대한 관심이 높고, 해안산책로, 공원 등이 늘어나면서 LED 보안등에 대한 수요가 늘고 있는 추세이다. LED보안등의 수요가 늘어나면서 보안등의 주목적인 범죄예방에 대비하면서 에너지를 절감할 수 있는 시스템에 대한 관심이 증대되고 있다. 최근의 조명제어 시스템은 단순히 보행자 유무만을 인식하여 조명의 밝기를 제어하는 시스템이 대다수이며, 비, 바람, 안개, 해무 등의 실시간 변화가 잦은 해안환경에 대한 고려는 부족하다. 따라서, 본 논문에서는 보행자 유무와 비, 안개, 해무 등의 환경적 정보를 융합하여 보안등의 밝기를 통합 제어할 수 있는 스마트 제어 시스템을 설계하고자 한다.

  • PDF

An Efficient Apeliodic Static Walking Algorithm for Quadrupecl Walking Machine (4족 보행 로봇의 효율적인 비주기 정적 보행 알고리즘)

  • 정경민;박윤창
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2000.10a
    • /
    • pp.42-42
    • /
    • 2000
  • This paper concerns an efficient aperiodic static crab walking algorithm for quadruped walking machine in rough terrain. In this algorithm, the requirements for forward stability margin and backward stability margin could be given differently in order to consider the slope of terrain and disturbances resulting from moving velocity. To restrict the searing regions for motion variables, such as moving distances until a leg is lifted or is placed, the standard leg transferring sequence is decided to be that of wave gaits. standard support pattern is also proposed that enables the quadruped to continue forward motion using the standard leg transferring sequence without falling into deadlock.

  • PDF

AR walking support application-based on object recognition for people with low vision (저시력 장애인을 위한 객체인식 기반의 AR 보행 앱 설계 및 구현)

  • Hyo-jin Oh;Chae-yeon Kim;Ju-Ha Park;Hye-bin Lee;Yang-gyu Lim
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2023.11a
    • /
    • pp.1029-1030
    • /
    • 2023
  • 시각장애인의 독립보행은 많은 위험 부담과 어려움을 안고 있다. 본 연구는 이러한 어려움을 해결하고자 사용자에게 GPS를 통해 목적지까지 안전한 경로로 안내하는 기능을 제공한다. 사물 인식 알고리즘을 통해 주행 시 필요한 장애물 판별과 신호등의 색상 등을 인식한다. 그리고 아두이노 초음파 센서를 활용하여 장애물과 사용자 간의 거리를 인식하고, 블루투스 모듈을 통해 측정한 값을 송신하여 구간별에 따라 사용자에게 경고음을 울린다. 더 나아가 AR 기능을 통해서 장애물을 입체적으로 강조하여 표시함으로써 저시력 장애인들이 장애물과 충돌하는 것을 예방한다.

Optimizing Path Finding based on Dijkstra's Algorithm for a Quadruped Walking Robot TITAN-VIII (4족보행 로봇 TITAN-VIII의 Dijkstra's Algorithm을 이용한 최적경로 탐색)

  • Nguyen, Van Tien;Ahn, Byong-Won;Bae, Cherl-O
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.23 no.5
    • /
    • pp.574-584
    • /
    • 2017
  • In this paper, the optimizing path finding control method is studied for a Legged-robot. It's named TITAN-VIII. It has a lot of advantages over the wheeled robot in the ability to walk freely on an irregular ground. However, the moving speed on the ground of the Legged-robot is slower than the Wheeled-robot's. Consequently, the purpose of the method is presented in this paper to minimize its time when it walks to a goal. It find the path, our approach is based on an algorithm which is called Dijkstra's algorithm. In the rest of paper, the various posture of the robot is discussed to keep the robot always in the statically stable. Based on above works, the math formulas are presented to determine the joint angles of the robot. After that an algorithm is designed to find and keep robot on the desired trajectory. Experimental results of the proposed method are demonstrated in the last of paper.

The study of sound source synthesis IC to realize the virtual engine sound of a car powered by electricity without an engine (엔진 없이 전기로 구동되는 자동차의 가상 엔진 음 구현을 위한 음원합성 IC에 관한 연구)

  • Koo, Jae-Eul;Hong, Jae-Gyu;Song, Young-Woog;Lee, Gi-Chang
    • The Journal of the Acoustical Society of Korea
    • /
    • v.40 no.6
    • /
    • pp.571-577
    • /
    • 2021
  • This study is a study on System On Chip (SOC) that implements virtual engine sound in electric vehicles without engines, and realizes vivid engine sound by combining Adaptive Difference PCM (ADPCM) method and frequency modulation method for satisfaction of driver's needs and safety of pedestrians. In addition, by proposing an electronic sound synthesis algorithm applying Musical Instrument Didital Interface (MIDI), an engine sound synthesis method and a constitutive model of an engine sound generation system are presented. In order to satisfy both drivers and pedestrians, this study uses Controller Area Network (CAN) communication to receive information such as Revolution Per Minute (RPM), vehicle speed, accelerator pedal depressed amount, torque, etc., transmitted according to the driver's driving habits, and then modulates the frequency according to the appropriate preset parameters We implemented an interaction algorithm that accurately reflects the intention of the system and driver by using interpolation for the system, ADPCM algorithm for reducing the amount of information, and MIDI format information for making engine sound easier.