• 제목/요약/키워드: 보행자 추적

검색결과 75건 처리시간 0.022초

방역수칙 위반 감시를 위한 자율주행 서비스 로봇 개발 (Development of a Self-Driving Service Robot for Monitoring Violations of Quarantine Rules)

  • 이인규;이윤재;조영준;강정석;이돈길;유홍석
    • 한국컴퓨터정보학회:학술대회논문집
    • /
    • 한국컴퓨터정보학회 2022년도 제65차 동계학술대회논문집 30권1호
    • /
    • pp.323-324
    • /
    • 2022
  • 본 논문에서는 사람의 개입 없이 실내 환경에서 마스크 미 착용자를 스스로 발견한 후 방역수칙위반 사실에 대한 경고와 함께 마스크 착용을 권고하는 인공지능 기반의 자율주행 서비스 로봇을 개발한다. 제안한 시스템에서 로봇은 동시적 위치 추적 지도 작성 기법인 SLAM(Simultaneous Localization and Mapping)기술을 이용하여 지도를 작성한 후 사용자가 제공한 웨이포인트(Waypoint)를 기반으로 자율주행한다. 또한, YOLO(You Only Look Once) 알고리즘을 이용한 실시간 객체 인식 기술을 활용하여 보행자의 마스크 착용 여부를 판단한다. 실험을 통해 사전에 작성된 지도에 지정된 웨이포인트를 따라 로봇이 자율주행하는 것을 확인하였다. 또한, 충전소로 이동할 경우, 영상 처리 기법을 활용하여 충전소에 부착된 표식에 근접하도록 이동하여 충전이 진행됨을 확인하였다.

  • PDF

고정카메라 및 능동카메라 환경에서 이동물체 추적 알고리즘에 관한 연구 (A Study on the Moving Object Tracking Algorithm of Static Camera and Active Camera in Environment)

  • 남기환;배철수
    • 한국정보통신학회논문지
    • /
    • 제7권2호
    • /
    • pp.344-352
    • /
    • 2003
  • 본 논문에서는 CCD 카메라를 통해 전송되는 영상 시퀀스를 대상으로 움직이는 물체의 형태가 보행중인 사람, 혹은 자동차인지를 식별하고 이의 이동 방향을 판단하여, 이를 추적하는 무인 감시 시스템을 위한 효율적인 알고리즘을 제안한다. 고정 카메라 환경에서 유동적인 배경으로부터 안정된 움직임 추출을 위하여 배경과 이동 물체를 통계적 매개 변수로 모델링하고 배경만이 존재하는 초기 연속 영상 중 일부에 대하여 통계적으로 학습한다. 또한, 능동카메라 환경에서는 카메라 움직임에 의하여 배경에서도 움직임 에너지가 발생하므로 예측된 이동 궤적정보를 이용함으로써 연산량의 감소와 정확성을 기하였다. 본 논문에서 제안한 알고리즘을 고정카메라 및 능동카메라 환경에서 취득한 연속 영상에 적용한 결과 안정된 추적 결과를 얻었다. 제안한 알고리즘은 제한된 지역내의 무인 감시 시스템 도로 환경에서 교통흐름의 모니터링 시스템 및 나아가서 지능형 도로망을 위한 자가 주행 시스템에 적용이 기대된다.

깊이와 칼라 영상의 특징을 사용한 ROI 기반 객체 추출 (ROI Based Object Extraction Using Features of Depth and Color Images)

  • 류가애;장호욱;김유성;류관희
    • 한국콘텐츠학회논문지
    • /
    • 제16권8호
    • /
    • pp.395-403
    • /
    • 2016
  • 최근 들어 영상처리는 여러 분야에서 사용되어지고 있다. 영상처리에서 많이 연구되어지고 있는 기술은 실시간으로 객체를 추적하는 기술이다. 객체를 추적하는 방법은 보행자를 추적하는 HOG(Histogram of Oriented Gradients), 전경과 배경 분리 방법을 사용하는 Codebook 같은 방법 들이 많이 알려져 있다. 그러나 객체가 움직이거나 동적인 배경, 조명변화가 심할 경우 객체 추출이 어려워진다. 본 논문에서는 ROI(Region of Interest)기반 깊이영상과 컬러영상의 특징을 이용해 객체를 추출하는 방법을 제안한다. 첫 번째, 깊이 영상에서 배경분리를 통해 객체의 위치를 찾아 ROI로 설정해준다. 두 번째, 컬러영상을 이용하여 영상의 특징점을 찾는다. 세 번째, 특징점과 객체의 볼록헐(convex hull) 구성점들을 이용하여 새로운 윤곽을 만들어 더 정확한 객체를 추출하도록 한다. 마지막으로 본 논문에서 제안한 방법과 기존 방법과의 비교를 통해 제안한 방법의 결과가 좀 더 정확한 객체를 추출하고 있음을 검증하였다.

이동 물체의 상호 발생 특징정보를 이용한 동영상에서의 이동물체 추적 (Moving Object Tracking Using Co-occurrence Features of Objects)

  • Kim, Seongdong;Seongah Chin;Moonwon Choo
    • 지능정보연구
    • /
    • 제8권2호
    • /
    • pp.1-13
    • /
    • 2002
  • 본 논문에서는 연속적으로 입력되는 칼라영상에서 물체의 이동에 의하여 형성된 동작영역을 확인하고, 영상의 시컨스(sequence)를 대상으로 움직이는 물체의 형태인 보행자 혹은 자동차들의 이동방향을 추적하는 시스템을 제안하였다. 카메라가 고정되어 있고 물체가 이동하는 상황에서 카메라시계에 진입하는 물체를 포착하여, 포착된 물체의 영역을 차 영상 분석을 통해 이진화하여 추출하고, 추출된 영역을 co-occurrence matrix의 RGB full 칼라의 특징 벡터를 추출하는 것을 제시하였다 추출되어지는 칼라 특징벡터를 분석하여 인접 프레임간의 이동물체 영역끼리의 대응관계를 조사함으로서, 이동물체를 추적한다. 군집화(clustering) 단계에서는 이전 단계에서 추출한 특징 벡터들 가운데 에너지, 엔트로피만을 가지고 인접 프레임간의 군집화를 조사하기 위하여 이동물체 영역들 간의 퍼지동적물체 정합 알고리즘을 적용시켰다. 인접 프레임간의 움직임 영역의 물체들에 대하여 멤버 쉽 함수를 근거로 중심 값을 계산하면, 동일 물체일 경우 중심 값 부근에서 군집이 형성되며, 이를 바탕으로 이동물체를 추출할 수 있는 방안을 제안하였다.

  • PDF

RGB-D 모델을 이용한 강건한 객체 탐지 및 추적 방법 (A Robust Object Detection and Tracking Method using RGB-D Model)

  • 박서희;전준철
    • 인터넷정보학회논문지
    • /
    • 제18권4호
    • /
    • pp.61-67
    • /
    • 2017
  • 최근 지능형 CCTV는 빅 데이터, 인공지능 및 영상 분석과 같은 분야와 결합하여 다양한 이상 행위들을 탐지하고 보행자와 같은 객체의 전반적인 상황을 분석할 수 있으며, 이러한 지능형 영상 감시 기능에 대한 영상 분석 연구가 활발히 진행되고 있는 추세이다. 그러나 일반적으로 2차원 정보를 이용하는 CCTV 영상은 위상학적 정보 부족으로 인해 객체 오 인식과 같은 한계가 존재한다. 이러한 문제는 두 대의 카메라를 사용하여 생성된 객체의 깊이 정보를 영상에 추가함으로써 해결 할 수 있다. 본 논문에서는 가우시안 혼합기법을 사용하여 배경 모델링을 수행하고, 모델링 된 배경에서 전경을 분할하여 움직이는 객체의 존재 여부를 탐지한다. RGB 정보 기반 분할 결과를 이용하여 깊이 정보 기반 분할을 수행하기 위해 두 대의 카메라를 사용하여 스테레오 기반 깊이 지도를 생성한다. RGB 기반으로 분할된 영역을 깊이 정보를 추출하기 위한 도메인으로 설정하고, 도메인 내부에서 깊이 기반 분할을 수행한다. 강건하게 분할된 객체의 중심점을 탐지하고 방향을 추적하기 위해 가장 기본적인 객체 추적 방법인 CAMShift 기법을 적용하여 객체의 움직임을 추적한다. 실험을 통하여 제안된 RGB-D 모델을 이용한 객체 탐지 및 추적 방법의 우수성을 입증하였다.

서베일런스에서 회선 신경망 기술을 이용한 사람 추적 기법 (Human Tracking Technology using Convolutional Neural Network in Visual Surveillance)

  • 강성관;천상훈
    • 디지털융복합연구
    • /
    • 제15권2호
    • /
    • pp.173-181
    • /
    • 2017
  • 본 논문에서는 현재와 이전의 영상 프레임 뿐 만 아니라 영상의 축척과 이전 위치에 주어진 객체의 비율과 위치 추정에 대한 학습 문제로서 사람 추적 문제를 다룬다. 본 논문에서는 회선 신경망 분류기를 이용한 사람 검출방법을 제안한다. 제안하는 방법은 신경망을 정규화하고 검출 작업을 위한 특징 표현을 자동으로 최적화함으로써 사람 검출의 정확성을 향상시킨다. 제안하는 방법에서는 감시 영상 시스템에서 실시간 영상이 들어오면 제일 먼저 위치를 추정하는 작업을 수행하기 위하여 회선신경망을 학습시킨다. 기존의 다른 학습 방법과 달리 회선신경망은 두쌍의 연속된 영상 프레임으로부터 공간적이고 시간적인 특징을 모두 공동으로 학습시킨다. 회선 신경망에 의해 학습된 특징을 이용하는 SVM 분류기의 정확성은 회선 신경망의 정확성과 일치한다. 이것은 자동적으로 최적화된 특징의 중요성을 확인시켜 준다. 그러나, 회선 신경망을 이용한 사람 객체의 분류에 대한 계산 시간은 사용된 특징의 타입과 관계없이 SVM의 것보다 약 40분의 1정도로 작다.

스테레오 추적 시스템을 이용한 보행자 높이 및 3차원 위치 추정 기법 (Estimation of Person Height and 3D Location using Stereo Tracking System)

  • 고정환;안성수
    • 디지털산업정보학회논문지
    • /
    • 제8권2호
    • /
    • pp.95-104
    • /
    • 2012
  • In this paper, an estimation of person height and 3D location of a moving person by using the pan/tilt-embedded stereo tracking system is suggested and implemented. In the proposed system, face coordinates of a target person is detected from the sequential input stereo image pairs by using the YCbCr color model and phase-type correlation methods and then, using this data as well as the geometric information of the stereo tracking system, distance to the target from the stereo camera and 3-dimensional location information of a target person are extracted. Basing on these extracted data the pan/tilt system embedded in the stereo camera is controlled to adaptively track a moving person and as a result, moving trajectory of a target person can be obtained. From some experiments using 780 frames of the sequential stereo image pairs, it is analyzed that standard deviation of the position displacement of the target in the horizontal and vertical directions after tracking is kept to be very low value of 1.5, 0.42 for 780 frames on average, and error ratio between the measured and computed 3D coordinate values of the target is also kept to be very low value of 0.5% on average. These good experimental results suggest a possibility of implementation of a new stereo target tracking system having a high degree of accuracy and a very fast response time with this proposed algorithm.

보행자 채널의 폐루프 MISO 시스템에서 적응형 단일계층 차분 코드북 설계 (A Single-layer Differential Codebook Design Over Pedestrian Closed-loop MISO System)

  • 김영주
    • 방송공학회논문지
    • /
    • 제24권4호
    • /
    • pp.613-622
    • /
    • 2019
  • 코드북을 이용하는 폐루프 MISO 시스템에서 시간 상관성을 이용한 차분 코드북 설계 방법을 제안한다. 단일계층 코드북의 코드워드 인자들은 위상 성운의 집합 중에서 선택된다. 기존의 코드워드 선택 식에서는 코드워드들을 구면의 캡들이라 가정하고 서로의 각도를 사인 법칙을 이용하여 구하였으나, 본 논문에서는 피타고라스 법칙을 이용하는 새로운 방법을 이용하여 계산식을 간소화 시키는 식을 제안한다. 그리고 선택되는 코드워드간의 상관 계수 즉, 위상차의 변화를 추적하여 2 개의 코드북 중에 최적의 코드북을 적응적으로 선택하는 방법을 제안한다. Monte-Carlo 컴퓨터 시뮬레이션을 통해 제안하는 코드북의 성능을 검증한다.

HOG-PCA와 객체 추적 알고리즘을 이용한 보행자 검출 및 추적 시스템 설계 (Design of Pedestrian Detection and Tracking System Using HOG-PCA and Object Tracking Algorithm)

  • 전필한;박찬준;김진율;오성권
    • 전기학회논문지
    • /
    • 제66권4호
    • /
    • pp.682-691
    • /
    • 2017
  • In this paper, we propose the fusion design methodology of both pedestrian detection and object tracking system realized with the aid of HOG-PCA based RBFNN pattern classifier. The proposed system includes detection and tracking parts. In the detection part, HOG features are extracted from input images for pedestrian detection. Dimension reduction is also dealt with in order to improve detection performance as well as processing speed by using PCA which is known as a typical dimension reduction method. The reduced features can be used as the input of the FCM-based RBFNNs pattern classifier to carry out the pedestrian detection. FCM-based RBFNNs pattern classifier consists of condition, conclusion, and inference parts. FCM clustering algorithm is used as the activation function of hidden layer. In the conclusion part of network, polynomial functions such as constant, linear, quadratic and modified quadratic are regarded as connection weights and their coefficients of polynomial function are estimated by LSE-based learning. In the tracking part, object tracking algorithms such as mean shift(MS) and cam shift(CS) leads to trace one of the pedestrian candidates nominated in the detection part. Finally, INRIA person database is used in order to evaluate the performance of the pedestrian detection of the proposed system while MIT pedestrian video as well as indoor and outdoor videos obtained from IC&CI laboratory in Suwon University are exploited to evaluate the performance of tracking.

딥러닝 기반 터널 내 이동체 자동 추적 및 유고상황 자동 감지 프로세스 개발 (Development of a deep-learning based automatic tracking of moving vehicles and incident detection processes on tunnels)

  • 이규범;신휴성;김동규
    • 한국터널지하공간학회 논문집
    • /
    • 제20권6호
    • /
    • pp.1161-1175
    • /
    • 2018
  • 도로 터널의 주행은 시야의 제한으로 인해 유고상황이 발생한 후 2차 대형사고로 이어지기 쉽다. 따라서, 유고상황 발생 즉시, 상황을 자동 감지하여 신속히 초동대응이 이루어 져야 한다. 유고상황을 자동으로 감시할 수 있는 시스템은 기존에도 존재했지만, 폐합된 터널 내 열악 환경에서 촬영되는 CCTV 영상의 질적 한계로 인해 유고상황을 제대로 감지하지 못했다. 이러한 한계를 극복하기 위해 딥러닝을 기반으로 한 터널 영상유고 자동 감지 시스템을 개발하였으며, 지난 2017년 11월 딥러닝 객체 인식 네트워크에 대한 연구를 진행하여 우수한 객체인식 성능을 보인바 있다. 그러나 객체인식은 정지영상 기반으로 수행되므로 이동체의 이동방향과 속도를 알 수 없어, 정차 및 역주행 등 이동체의 이동특성에 따른 유고상황을 판단하기 힘들다. 본 논문에서는 객체인식으로 감지된 이동체의 객체정보를 기반으로 별도의 객체추적기법을 적용하여 이동체의 이동 특성을 자동으로 추적하는 프로세스를 제안하였다. 이를 통해 얻어진 이동체의 이동 방향과 속도 정보를 기반으로 정차 및 역주행을 판별하는 알고리즘을 개발하여 딥러닝 기반 터널 영상유고 자동감지 시스템을 완성하였다. 또한, 유고상황이 포함된 영상들에 대하여 유고상황 감지성능을 검증하였다. 검증 실험 결과, 화재, 정차와 역주행 상황에 대해서는 모두 100% 수준으로 완전한 유고상황 감지성능을 보였으나, 보행자 발생 상황에서는 78.5%로 상대적으로 낮은 성능을 보였다. 하지만, 향후 지속적인 영상유고 영상 빅데이터를 확장해 나가고 주기적인 재학습을 통해 유고상황에 대한 인지성능을 향상시켜 나갈 수 있을 것이다.