본 논문에서는 3축 가속도 센서를 이용하여 사람이 보행 시 발생하는 센서 데이터를 획득하여 실시간 걸음 수 검출과 활동량으로 변환 가능한 웨어러블 디바이스를 개발하였다. 피험자 59명을 대상으로 트레드밀에서 호흡가스대사분석기(K4B2), Actical 그리고 본 연구에서 개발된 디바이스를 착용 후 36분 동안 테스트 프로토콜에 따라 느리게 걷기, 걷기, 빠르게 걷기, 천천히 뛰기, 뛰기, 빠르게 뛰기 등의 다양한 걸음 속력에서 테스트를 진행하였다. 3축 가속도 센서의 X, Y, Z축 출력 값을 하나의 대표 값으로 처리하는 신호벡터크기(Signal Vector Magnitude :SVM)를 사용하였다. 또한 정확한 걸음 수를 검출하기 위해 휴리스틱 알고리즘(Heuristic Algorithm :HA)을 제안하고 적응적인 임계값 알고리즘(Adaptive Threshold Algorithm :ATA), 적응적인 잠금 구간 알고리즘(Adaptive Locking Period Algorithm :ALPA)을 제안한다. 그리고 인체 활동량 측정을 위하여 가속도 센서 출력 데이터와 피험자 정보를 이용하여 에너지소비량(Energy Expenditure :EE)을 추정하는 회귀식을 도출하였다. 실험결과 제안하는 알고리즘의 걸음 수 인식률은 97.34%를 보였으며 활동량 변환 알고리즘도 Actical의 성능보다 1.61% 향상 되었다.
고령화 사회로 진입하면서 노인들은 노화과정에 의한 보행능력의 감소 및 근력 약화와 같은 신체적 변화로 인해 잦은 낙상을 경험한다. 이에 따라 낙상 사고를 감지하는 연구가 활발히 진행되고 있다. 낙상은 사전 예방도 중요하지만 사고 발생 후의 신속한 대처도 중요하다. 낙상을 감지하고 의료진에게 즉시 낙상정보를 제공하여 후속적 조치를 취하는 것은 사고 후 대처의 핵심이다. 본 논문에서는 스마트폰 환경에서 사용자의 낙상 후 방향을 판별하기 위해 두 가지 센서 데이터의 특정 값들을 추출하였으며, 이에 5 가지 기계학습 알고리즘을 적용하였다. 사용자는 스마트폰을 착용한 상태로 전후좌우 4 방향 낙상 실험을 진행하며 스마트폰 내에 내장된 3 축 가속도 센서와 3 축 자이로 센서값을 측정한다. 피험자 11 명을 대상으로 낙상 실험 결과, 5 가지의 분류기 중 k-NN에서 98.6%의 인식률을 나타내었다. 뽑아낸 특징 값과 분류 알고리즘은 낙상의 방향 검출에 유용한 것으로 판단된다.
최근 드론을 이용한 공간정보 구축이 활성화되면서 공간정보 산업발전에 많은 기여를 하고 있다. 하지만 드론 공간정보는 카메라의 중심투영에 의한 발생하는 폐색영역 뿐 아니라 가로수, 보행자, 현수막과 같은 적치물에 의한 폐색 영역이 필연적으로 발생한다. 이러한 폐색영역을 효율적으로 해결하기 위한 다양한 방안이 연구되고 있다. 본 연구에서는 폐색영역 해결을 위해 원초적인 재촬영이 아닌 딥러닝 알고리즘을 적용하기 위한 다양한 알고리즘별 조사 및 비교 연구를 수행하였다. 그 결과, 객체 검출 알고리즘인 HOG부터 기계학습 방법인 SVM, 딥러닝 방식인 DNN, CNN, RNN까지 다양한 모델들이 개발 및 적용되고 있으며, 이 중 영상의 분류, 검출에 가장 보편적이고 효율적인 알고리즘은 CNN 기법임을 확인하였다. 향후 AI 기반의 자동 객체 탐지와 분류는 공간정보 분야에서 각광받는 최신 과학기술이다. 이를 위해 다양한 알고리즘에 대한 검토와 적용은 중요하다. 따라서, 본 연구에서 제시하는 알고리즘별 적용 가능성은 자동으로 드론 영상의 폐색영역을 탐지하고 해결할 수 있어 공간정보 구축의 시간, 비용, 인력에 대한 효율성 향상에 기여할 것으로 판단된다.
본 논문에서는 현재와 이전의 영상 프레임 뿐 만 아니라 영상의 축척과 이전 위치에 주어진 객체의 비율과 위치 추정에 대한 학습 문제로서 사람 추적 문제를 다룬다. 본 논문에서는 회선 신경망 분류기를 이용한 사람 검출방법을 제안한다. 제안하는 방법은 신경망을 정규화하고 검출 작업을 위한 특징 표현을 자동으로 최적화함으로써 사람 검출의 정확성을 향상시킨다. 제안하는 방법에서는 감시 영상 시스템에서 실시간 영상이 들어오면 제일 먼저 위치를 추정하는 작업을 수행하기 위하여 회선신경망을 학습시킨다. 기존의 다른 학습 방법과 달리 회선신경망은 두쌍의 연속된 영상 프레임으로부터 공간적이고 시간적인 특징을 모두 공동으로 학습시킨다. 회선 신경망에 의해 학습된 특징을 이용하는 SVM 분류기의 정확성은 회선 신경망의 정확성과 일치한다. 이것은 자동적으로 최적화된 특징의 중요성을 확인시켜 준다. 그러나, 회선 신경망을 이용한 사람 객체의 분류에 대한 계산 시간은 사용된 특징의 타입과 관계없이 SVM의 것보다 약 40분의 1정도로 작다.
본 논문에서는 3축 가속도 센서를 이용하여 사람이 보행 시 발생하는 센서 데이터를 획득하여 실시간 걸음 수 검출이 가능한 웨어러블 디바이스를 개발하였다. 피험자 59명을 대상으로 트레드밀에서 Actical 과 본 연구에서 개발된 디바이스를 착용 후 36분 동안 테스트 프로토콜에 따라 느리게 걷기, 걷기, 빠르게 걷기, 천천히 뛰기, 뛰기, 빠르게 뛰기 등의 다양한 걸음 속력에서 테스트를 진행하였다. 3축 가속도 센서의 X, Y, Z축 출력 값을 하나의 대표 값으로 처리하는 신호벡터크기(Signal Vector Magnitude : SVM)를 사용하였다. 또한 정확한 걸음 수를 검출하기 위해 휴리스틱 알고리즘(Heuristic Algorithm : HA)을 제안하고 적응적인 임계값 알고리즘(Adaptive Threshold Algorithm : ATA), 적응적인 잠금 구간 알고리즘(Adaptive Locking Period Algorithm : ALPA)을 제안한다. 실험결과 제안하는 알고리즘의 걸음 수 인식률은 97.34%로 Actical의 인식률(91.74%)보다 5.6%향상 되었다.
도로에서 발생되는 차량간 충돌사고, 교통 소통 상황, 보행자 사고 등 다양한 도로 상황을 모니터링 및 자동으로 인식하여 교통정보를 제공하거나 긴급구난 서비스를 제공하기 위한 다양한 기술이 개발되고 있다. 도로 모니터링을 통한 다양한 객체 추적 및 상황인식을 위해서는 잡음 및 겹침 등에 강인한 객체 추적 기술이 요구된다. 본 논문에서는 외부 환경에서 Background Subtraction, LK-Optical Flow, 지역 기반 히스토그램 특징의 결합을 통해 추적을 위한 몇 가지 추정 인자를 생성하고 이를 통해 변화가 있는 객체, 잡음에도 비교적 강인한 추적 방법을 제안한다. 구체적으로는 객체의 초기 움직임 정보를 검출하기 위해 옵티컬 플로우를 적용하여 컬러 정보 및 밝기 변화에 무관한 이동 정보를 측정한다. 측정된 정보를 기반으로 하여 지역 히스토그램 기반 검증을 통해 신뢰도를 판단한다. 신뢰도가 낮을 경우 배경 제거 정보와 지역 히스토그램 트래커의 정보를 혼합하여 새로운 위치를 추정한다. 실험을 통해 제안된 기법이 객체를 추적하고 있는 도중 나타날 수 있는 충돌, 새로운 특징의 등장, 크기 변화 상황에 강인하게 동작함을 제시한다.
In this paper, we propose the fusion design methodology of both pedestrian detection and object tracking system realized with the aid of HOG-PCA based RBFNN pattern classifier. The proposed system includes detection and tracking parts. In the detection part, HOG features are extracted from input images for pedestrian detection. Dimension reduction is also dealt with in order to improve detection performance as well as processing speed by using PCA which is known as a typical dimension reduction method. The reduced features can be used as the input of the FCM-based RBFNNs pattern classifier to carry out the pedestrian detection. FCM-based RBFNNs pattern classifier consists of condition, conclusion, and inference parts. FCM clustering algorithm is used as the activation function of hidden layer. In the conclusion part of network, polynomial functions such as constant, linear, quadratic and modified quadratic are regarded as connection weights and their coefficients of polynomial function are estimated by LSE-based learning. In the tracking part, object tracking algorithms such as mean shift(MS) and cam shift(CS) leads to trace one of the pedestrian candidates nominated in the detection part. Finally, INRIA person database is used in order to evaluate the performance of the pedestrian detection of the proposed system while MIT pedestrian video as well as indoor and outdoor videos obtained from IC&CI laboratory in Suwon University are exploited to evaluate the performance of tracking.
자율주행 자동차 개발 및 상용화에 있어서 주행안전도 확보가 가장 중요한 시점에서 이를 위해 전방 및 주행차량 주변에 존재하는 다양한 정적/동적 차량의 인식과 검출 성능을 고도화 및 최적화하기 위한 AI, 빅데이터 기반 알고리즘개발 등이 연구되고 있다. 하지만 레이더와 카메라의 고유한 장점을 활용하여 동일한 차량으로 인식하기 위한 연구 사례들이 많이 있지만, 딥러닝 영상 처리 기술을 이용하지 않거나, 레이더의 성능상의 문제로 짧은 거리만 동일한 표적으로 감지하고 있다. 따라서 레이더 장비와 카메라 장비에서 수집할 수 있는 데이터셋을 구성하고, 데이터셋의 오차를 계산하여 동일한 표적으로 인식하는 융합 기반 차량 인식 방법이 필요하다. 본 논문에서는 레이더와 CCTV(영상) 설치 위치에 따라 동일한 객체로 판단하기에 데이터 오차가 발생하기 때문에 설치한 위치에 따라 위치 정보를 연동할 수 있는 기술 개발을 목표로 한다.
본 논문에서는 CCD 카메라를 통해 전송되는 영상 시퀀스를 대상으로 움직이는 물체의 형태가 보행중인 사람, 혹은 자동차인지를 식별하고 이의 이동 방향을 판단하여, 이를 추적하는 무인 감시 시스템을 위한 효율적인 알고리즘을 제안한다. 고정 카메라 환경에서 유동적인 배경으로부터 안정된 움직임 추출을 위하여 배경과 이동 물체를 통계적 매개 변수로 모델링하고 배경만이 존재하는 초기 연속 영상 중 일부에 대하여 통계적으로 학습한다. 또한, 능동카메라 환경에서는 카메라 움직임에 의하여 배경에서도 움직임 에너지가 발생하므로 예측된 이동 궤적정보를 이용함으로써 연산량의 감소와 정확성을 기하였다. 본 논문에서 제안한 알고리즘을 고정카메라 및 능동카메라 환경에서 취득한 연속 영상에 적용한 결과 안정된 추적 결과를 얻었다. 제안한 알고리즘은 제한된 지역내의 무인 감시 시스템 도로 환경에서 교통흐름의 모니터링 시스템 및 나아가서 지능형 도로망을 위한 자가 주행 시스템에 적용이 기대된다.
자동차의 자율주행기능 실현을 위해서는 기존의 지능형자동차 인식시스템 보다 강인하고 우수한 성능의 주행환경 인식시스템이 요구된다. 특히, 카메라와 레이저레이더 센서는 물체의 특징, 거리 등의 정보를 제공하는 대표적인 주행환경인식 센서로, 이를 이용한 단일센서기반 인식시스템 연구가 활발히 이루어지고 있다. 일반적으로 레이저레이더 센서의 거리정보는 도로의 구조, 차량, 보행자 등의 인식을 위하여 많이 사용되며, 카메라의 영상정보는 차선, 횡단보도, 표지판 등의 주행환경 인지에 사용된다. 하지만, 단일센서기반 인식시스템은 센서의 특성 및 주행환경에 의한 오검출 또는 미검출 발생률이 높기 때문에 자율주행기능 구현에 적합하지 않다. 따라서 단일센서기반의 인식시스템의 한계를 극복하기 위하여 카메라, 레이저레이더, GPS 등을 이용한 정보융합 인식시스템 개발이 필수적이다. 이 연구에서는 영상 및 레이저레이더의 정보융합을 통해 강인한 차선인식, 횡단보도 인식 등을 수행하는 자율주행자동차의 주행환경 인식기술을 개발하였다. 이 연구를 통해 개발된 주행환경 인식기술은 자율주행자동차에 적용되어 다양한 주행시험을 통해 신뢰성 및 안정성이 검증되었다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.