• 제목/요약/키워드: 보상 확률

검색결과 114건 처리시간 0.029초

전력품질 향상을 위한 확률론적 위험도 평가 방안 (Probabilistic risk assessment for the improvement in power quality)

  • 한종훈;장길수
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2009년도 제40회 하계학술대회
    • /
    • pp.131_132
    • /
    • 2009
  • 순간전압강하에 대한 다양한 전력품질 보상기기에 대한 투자 여부를 결정하기 위해서는 장비에 대한 기술적이고 경제적인 분석이 필요하다. 전력품질 보상기기에 대한 수명비용을 분석하기 위해 반복 수행에 있어 강력한 모델인 몬테카를로 시뮬레이션을 이용하여 확률론적 위험도 평가를 수행하였으며, 확정모델의 분석 결과와 비교하였다. 확률론적 분석을 통하여 불확실성을 반영한 보다 현실적인 위험도 평가 결과를 얻을 수 있다.

  • PDF

2-stage 마르코프 의사결정 상황에서 Successor Representation 기반 강화학습 알고리즘 성능 평가 (Evaluating a successor representation-based reinforcement learning algorithm in the 2-stage Markov decision task)

  • 김소현;이지항
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2021년도 추계학술발표대회
    • /
    • pp.910-913
    • /
    • 2021
  • Successor representation (SR) 은 두뇌 내 해마의 공간 세포가 인지맵을 구성하여 환경을 학습하고, 이를 활용하여 변화하는 환경에서 유연하게 최적 전략을 수립하는 기전을 모사한 강화학습 방법이다. 특히, 학습한 환경 정보를 활용, 환경 구조 안에서 목표가 변화할 때 강인하게 대응하여 일반 model-free 강화학습에 비해 빠르게 보상 변화에 적응하고 최적 전략을 찾는 것으로 알려져 있다. 본 논문에서는 SR 기반 강화학습 알고리즘이 보상의 변화와 더불어 환경 구조, 특히 환경의 상태 천이 확률이 변화하여 보상의 변화를 유발하는 상황에서 어떠한 성능을 보이는 지 확인하였다. 벤치마크 알고리즘으로 SR 의 특성을 목적 기반 강화학습으로 통합한 SR-Dyna 를 사용하였고, 환경 상태 천이 불확실성과 보상 변화가 동시에 나타나는 2-stage 마르코프 의사결정 과제를 실험 환경으로 사용하였다. 시뮬레이션 결과, SR-Dyna 는 환경 내 상태 천이 확률 변화에 따른 보상 변화에는 적절히 대응하지 못하는 결과를 보였다. 본 결과를 통해 두뇌의 강화학습과 알고리즘 강화학습의 차이를 이해하여, 환경 변화에 강인한 강화학습 알고리즘 설계를 기대할 수 있다.

음질향상을 위해 비선형 함수와 사전 음성부재확률을 이용한 최소통계법의 잡음전력편의 보상방법 (Noise-Biased Compensation of Minimum Statistics Method using a Nonlinear Function and A Priori Speech Absence Probability for Speech Enhancement)

  • 이수정;이강성;김순협
    • 한국음향학회지
    • /
    • 제28권1호
    • /
    • pp.77-83
    • /
    • 2009
  • 본 논문에서는 비정상 잡음환경에서 음질향상을 위한 비선형 함수와 사전 음성부재 확률을 이용한 최소 통계치(MS) 방법의 잡음전력편의 보상 방법을 제안한다. 비정상 잡음환경에서 잡음전력추정을 위해 최소 통계치 방법이 잘 알려져 있지만, 예측된 잡음전력 추정 값은 실제 잡음 전력 값보다 하향 편의 되는 특성을 나타낸다. 제안한 방법은 비선형 함수를 적용한 적응보상파라미터와 사전 음성부재 확률 값을 혼용하는 잡음전력편의 보상방법이다. 특히, 적응보상 파라미터는 사후 SNR을 이용한 비 선형함수를 적용하여 잡음수준의 증감에 따라 파라미터 값을 조절한다. 또한, 사전 음성부재확률 값이 1로 수렴할 경우, 적응보상파라미터 값은 각 주파수별로 최대치까지 증가하지만, 확률 값이 0에 가까워지면 반대의 특성을 나타낸다. 제안한 알고리즘의 잡음전력추정 및 음질향상의 성능평가를 위해 다양한 종류의 잡음과 비정상적인 극심한 잡음환경을 설정하여 실험하고, 음질향상을 위해 주파수 차감법과 결합하였다. 알고리즘의 성능은 다양한 잡음환경의 신호 대 잡음비 (SNR)와 Itakura-Saito 음질왜곡 평가법을 이용하여 기존 최소 통계치 (MS)방법에 비해 우수한 결과를 나타냈다.

도플러 효과의 보상을 통한 시간지연 차의 추정 (Improved Time Delay Difference Estimation for Target Tracking using Doppler Information)

  • 염석원;윤동헌;윤동욱;고한석
    • 한국음향학회지
    • /
    • 제17권8호
    • /
    • pp.25-33
    • /
    • 1998
  • 본 논문에서는 한 쌍의 센서를 이용하여 미지의 수중 음향 신호의 시간지연의 차 (Time Delay Difference)를 추정하고 탐지하는 알고리즘을 다루고 있다. 전형적인 시간지연 차의 최적화 추정 기법은 두 신호의 상관관계(Cross Correlation)에 의한 ML(Maximum likelihood)추정으로 구할 수 있지만, 실제 수중 음향 환경 하에서 시간 지연뿐만 아니라 표 적의 이동에 의하여 발생하는 도플러 효과로 신호의 주파수도 변하게 된다. 이러한 신호 주 파수의 올바른 고려 없이 단순히 두 신호의 시간지연만을 추정하는 방법은 불가피한 에러를 생성하게 된다. 본 논문에서는 시시각각 변하는 시간지연의 차를 구하기 위한 준 최적화 기 법인 확률분포 함수의 Recursive Filter에 시간 지연 차와 도플러효과의 2차원 확률분포 함 수를 적용한 추정 알고리즘을 제안한다. 관측된 신호의 리샘플링(Resampling)을 통하여 도 플러 효과를 보상한 후 2차원 Conditional likelihood를 구하고 Projection과 Correction 과정 을 통하여 시간지연과 도플러 효과에 대한 사후확률을 구한다. 그리고 이러한 알고리즘을 가상 시나리오에 대한 모의실험을 통하여 평가한다.

  • PDF

불확실성이 높은 의사결정 환경에서 SR 기반 강화학습 알고리즘의 성능 분석 (Evaluating SR-Based Reinforcement Learning Algorithm Under the Highly Uncertain Decision Task)

  • 김소현;이지항
    • 정보처리학회논문지:소프트웨어 및 데이터공학
    • /
    • 제11권8호
    • /
    • pp.331-338
    • /
    • 2022
  • 차기 상태 천이 표상(Successor representation, SR) 기반 강화학습 알고리즘은 두뇌에서 발현되는 신경과학적 기전을 바탕으로 발전해온 강화학습 모델이다. 해마에서 형성되는 인지맵 기반의 환경 구조 정보를 활용하여, 변화하는 환경에서도 빠르고 유연하게 학습하고 의사결정 가능한 자연 지능 모사형 강화학습 방법으로, 불확실한 보상 구조 변화에 대해 빠르게 학습하고 적응하는 강인한 성능을 보이는 것으로 잘 알려져 있다. 본 논문에서는 표면적인 보상 구조가 변화하는 환경뿐만 아니라, 상태 천이 확률과 같은 환경 구조 내 잠재 변수가 보상 구조 변화를 유발하는 상황에서도 SR-기반 강화학습 알고리즘이 강인하게 반응하고 학습할 수 있는지 확인하고자 한다. 성능 확인을 위해, 상태 천이에 대한 불확실성과 이로 인한 보상 구조 변화가 동시에 나타나는 2단계 마르코프 의사결정 환경에서, 목적 기반 강화학습 알고리즘에 SR을 융합한 SR-다이나 강화학습 에이전트 시뮬레이션을 수행하였다. 더불어, SR의 특성을 보다 잘 관찰하기 위해 환경을 변화시키는 잠재 변수들을 순차적으로 제어하면서 기존의 환경과 비교하여 추가적인 실험을 실시하였다. 실험 결과, SR-다이나는 환경 내 상태 천이 확률 변화에 따른 보상 변화를 제한적으로 학습하는 행동을 보였다. 다만 기존 환경에서의 실험 결과와 비교했을 때, SR-다이나는 잠재 변수 변화로 인한 보상 구조 변화를 빠르게 학습하지는 못하는 것으로 확인 되었다. 본 결과를 통해 환경 구조가 빠르게 변화하는 환경에서도 강인하게 동작할 수 있는 SR-기반 강화학습 에이전트 설계를 기대한다.

셀룰라 시스템에서 D2D 통신 전력제어: 채널 추정에러 보상 방안 (Power Control for D2D Communication in the Cellular System: Compensation for Channel Estimation Error)

  • 오창윤
    • 한국컴퓨터정보학회:학술대회논문집
    • /
    • 한국컴퓨터정보학회 2018년도 제58차 하계학술대회논문집 26권2호
    • /
    • pp.127-128
    • /
    • 2018
  • 본 논문에서는 채널추정에러가 존재하는 셀룰라시스템 환경에서 D2D 통신을 위한 전력제어 알고리즘 운용방안을 제안한다. 전력제어의 목적은 요구하는 SIR 값을 유지하는 것이다. 하지만, 채널 추정에러 환경에서의 SIR 성능은 확률적 분포를 가지게 된다. 이러한 확률적 SIR 성능 분포를 고려하여, 채널추정에러를 보상하는 가변적인 SIR 적용과 재전송 기법을 복합하여 D2D 통신을 위한 전력제어 기법을 제안하도록 한다.

  • PDF

Simulcasting 기법을 적용한 DS-CDMA 시스템의 호처리에 관한 연구 (A study on the call processing of DS-CDMA system using the simulcasting scheme)

  • 노재호;권종형;정현민;강창언
    • 한국통신학회논문지
    • /
    • 제22권12호
    • /
    • pp.2664-2673
    • /
    • 1997
  • 셀룰라 이동 통신 시스템에서 신호의 페이딩은 시스템의 용량 확장에 영향을 미친다. 단기 페이딩은 시스템의 무선 통신 방식에 따라 다른 신호 처리 방식으로 보상이 가능하나, 장기 페이딩은 이와는 다른 보상 방법이 필요하다. 따라서 본 논문에서는 이러한 장기 페이딩을 극복하기 위해 분산 안테나를 이용한 Simulcasting 기법을 적용하여 DS-CDMA 시스템에서 호처리 실험을 하였다. 실험의 결과 하나의 셀 내에 분산 안테나의 수가 많을수록 새로운 호의 차단 확률과 handoff을 요구하는 호의 강제 종료 확률이 감소함을 관찰할 수 있었다.

  • PDF

PCMM 기반 특징 보상 기법에서 변별력 향상을 위한 Minimum Classification Error 훈련의 적용 (Minimum Classification Error Training to Improve Discriminability of PCMM-Based Feature Compensation)

  • 김우일;고한석
    • 한국음향학회지
    • /
    • 제24권1호
    • /
    • pp.58-68
    • /
    • 2005
  • 본 논문에서는 잡음 환경에서 강인한 음성 인식을 위하여 특징 보상 기법의 성능을 향상시킬 수 있는 방법을 제안한다. 기존의 음성 모델 기반의 특징 보상 기법에서 이용되는 오염 음성 모델 추정 방식은 입력 음성에 대한 변별력 있는 사후 확률 예측을 보장하지 못하며, 부정확하게 계산된 사후 확률은 복구된 음성에서 명료도 하락의 문제를 일으킨다. 제안하는 기법에서는 오염 음성 모델 추정 과정에 분별적 훈련 방식의 하나인 최소 분류 오류 (MCE) 훈련 기법을 도입한다. MCE 훈련 기법을 적용하기 위해 변별력 하락의 가능성을 가지는 '경쟁 요소' 를 결정하는 기법을 제안한다. 병렬결합된 혼합 모델 (PCMM) 기반의 특징 보상에 MCE 훈련 기법을 적용하는 과정을 제안하고 변별력 향상의 영향을 관찰한다. Aurora 2.0 데이터베이스와 실제 자동차 주행 환경에서 수집된 음성 데이터베이스에 대한 성능 평가를 실시한다. 실험 결과는 제안한 기법이 음성 인식 성능 향상에 도움이 되는 것을 입증한다.

측정물의 속도에 따른 머신비젼의 성능변화와 선형보상에 의한 정밀도 향상 (Study on Performance Variation of Machine Vision according to Velocity of an Object and Precision Improvement by Linear Compensation)

  • 최희남;강봉수
    • 한국산학기술학회논문지
    • /
    • 제19권12호
    • /
    • pp.903-909
    • /
    • 2018
  • 본 연구에서는 산업현장의 생산라인에서 자동검사의 편이성과 속도를 높이기 위해서 정지상태가 아닌 컨베이어에서 부품이 이송되는 과정에서 촬영한 영상 이미지에 머신비젼 기법을 적용했을 때 나타나는 측정 성능변화를 실제 실험결과를 바탕으로 분석한다. 자동차 부품인 원통형 로드의 길이를 에지검출 기법으로 계측했을 시 이송속도가 높아지면 배경과 부품 이미지 경계의 불확실성이 높아지므로 인하여 이미지 길이도 작아짐을 알 수 있었다. 돌출형과 비돌출형을 포함하여 6 종류의 시편과 7 단계의 속도변화를 통해서 실험을 수행하였고 실험결과에 대해서 속도에 따른 길이측정 편이오차와 확률오차 분석을 수행하였다. 이를 통해서 속도가 증가함에 따라 편이오차와 확률오차가 증가함을 확인하였고 이중에서 편이오차를 줄이기 위한 선형 보상법을 제시하였다. 선형 보상법으로 보정된 원통형 로드의 길이 측정값은 확률오차가 반복정밀도를 넘지않는 30 cm/s 의 속도 구간안에서는 정지상태와 동일한 정밀도를 나타내었다. 따라서 제안된 머신비젼의 분석과 보정기법은 산업현장에서 머신비젼 기반 자동검사의 응용성을 확대할 수 있을 것으로 기대된다.

미지표적의 식별과 시간지연 차의 추적연구 (Detection and Time Delay Estimation of Unknown Target)

  • 염석원
    • 한국음향학회:학술대회논문집
    • /
    • 한국음향학회 1998년도 학술발표대회 논문집 제17권 1호
    • /
    • pp.499-502
    • /
    • 1998
  • 본 논문에서는 한 쌍의 수동소나를 이용하여 미지의 잠항물체의 존재 유무를 확인하고 각 센서에 도달하는 시간지연의 차를 평가하는 Detection과 Tracking 알고리즘을 연구한다. 이 과정에서 이동하는 표적의 속력에 의한 도플러효과를 보상하는 2차원 확률분포 함수를 적용함으로 보다 정확한 결과를 도출한다. 관측신호의 Cross-Correlation과 Bayesian Method를 이용하여 계산한 시간지연과 도플러효과 비의 이차원 Likelihood 함수로부터 사후확률 (Posterior Probability)을 구하여 발견 평가와 추적을 수행한다.

  • PDF