• Title/Summary/Keyword: 보링바

Search Result 13, Processing Time 0.024 seconds

A Study on the Development of High Efficiency Anti-Vibration Boring Bar (고능률 방진 보링바 개발에 관한 연구)

  • 최춘규;이우영;최성주;이동주
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1995.10a
    • /
    • pp.109-112
    • /
    • 1995
  • This paper analyzes high efficiency anti-vibration boring bars which increase stability against chatter vibration in boring operations. Structural analysis and mathematical modeling with considering dynamic properties for three types of existing boring bars are performed to search for optimal design parameters. The purpose of this paper is to find out design parameters for high efficiency anti-vibration boring bar.

  • PDF

A Study on the Dynamic Characteristics of the Composite Boring Bar (복합재료 보링바의 동적 특성에 관한 연구)

  • 황희윤;김진국;이대길
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2003.04a
    • /
    • pp.206-210
    • /
    • 2003
  • Machining of deep holes with conventional boring bars frequently induce chatter vibration because of their low dynamic stiffness which is defined as the product of static stiffness and damping of conventional boring bar materials. In addition, the specific stiffness ($E/{\rho}g$) of boring bars is more important than the static stiffness to increase the fundamental natural frequency of boring bars in high speed machining. Therefore, boring bar materials should have high static stiffness and high damping as well as high specific stiffness. The best way to meet requirements is to employ fiber reinforced composite materials for high speed boring bars because composite materials have high static stiffness, high damping and high specific stiffness compared to conventional boring bar materials. In this study, the dynamic characteristics of carbon fiber epoxy composite boring bars were investigated. From the metal cutting test, it was found that the chatter was not initiated up to the ratio of length to diameter of 10.7 at the rotating speed of 2,500 rpm.

  • PDF

Study on the dynamic stiffness variation of boring bar by Taguchi Method (다구찌 방법을 이용한 보링바의 동강성 변동에 관한 연구)

  • Chun, Se-Ho;Ko, Tae-Jo
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.8 no.3
    • /
    • pp.98-104
    • /
    • 2009
  • The objective of this paper is to investigate the effect of factors on the dynamic stiffness variation of boring bar. The experiment was carried out by Taguchi Method and Orthogonal array table. The results indicate that overhang was found out to be dominant factor with 95% confident intervals and feed rate and depth of cut were insignificant. In addition, analysis of loss function shows that loss value increased sharply from 3D to 4D(D is a shank diameter). Consequently, there is critical point which changes property of dynamic stiffness.

  • PDF

A Study on the Dynamic Response Characteristics of Lathe Boring Bar (선반용 보링바의 동적응답특성 변동에 관한 연구)

  • Chun, Se-Ho;Ko, Tae-Jo
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.27 no.8
    • /
    • pp.62-69
    • /
    • 2010
  • Internal lathe machining with a boring bar is weak with respect to vibration because the bar is long and slender. Therefore, it is important to study the dynamic characteristics of a boring bar. The purpose of this study was to identify the effects of overhang and cutting conditions on the dynamic response characteristics of a boring bar. For an efficient experiment, an $L_g(3^3)$ orthogonal array was applied and the results were quantitatively analyzed by ANOVA. Overhang, feed per revolution, and depth of cut were selected as independent variables. Meanwhile, dynamic stiffness, damping ratio, damping coefficient, and acceleration were chosen as dependent variables. The vibration signal was obtained from an accelerometer attached to the boring bar, followed by visualization by a signal analyzer. The effect of overhang was found to have a significant effect on the dynamic stiffness, damping ratio, and damping coefficient, but the other variables did not. As the length of the overhang increased, the dynamic stiffness decreased and the damping ratio increased. In addition, the damping coefficient increased until the length of the overhang was 4D (where D is the shank diameter), after which it remained constant. The acceleration decreased until the overhang length was 4D, and then increased sharply when the overhang was increased further. From these results, the behavioral trend of the damping characteristics changed when its overhang length was 4D. Consequently, there is a critical point that the dynamic characteristics of boring bar change.

The Vibration Measurement of Boring Process by Using the Optical Fiber Sensor at inside of Boring Bar (광섬유 센서의 보링 바 삽입에 의한 진동측정)

  • Song, Doo-Sang;Hong, Jun-Hee;Guo, Yang-Yang
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.28 no.6
    • /
    • pp.709-715
    • /
    • 2011
  • Chattering in cutting operations are usually a cumbersome part of the manufacturing process in mechanical. Particular, machining performance such as that of the boring process is limited by cutting condition at the movable components. Among various sources of chatter vibration, detrimental point in cutting condition is found a mechanical condition on overhang. It limits cutting speed, depth, surface roughness and tool wear failure as result because the all properties are varying with the metal removal process. In this case, we have to observe the resonance frequencies of a boring bar for continuous cutting. In the established research, boring bar vibration of cutting system has been measured with the aid of accelerometer. However, the inherent parameters of internal turning operations are severely limit for the real time monitoring on accelerometers. At this point, this paper is proposed other method for real time monitoring during continuous cutting with optical fiber at the inside of boring bar. This method has been used a plastic fiber in the special jig on boring bar by based on experimental modal analysis. In this study, improvement of monitoring system on continuous internal cutting was attempted using optical fiber sensor of inside type because usually chattering is investigated experimentally measuring the variation in chip thickness. It is demonstrated that the optical fiber sensor is possibility to measure of chattering with real time in boring process.

Vibration Analysis of Boring Bar with Dynamic Vibration Absorber (동흡진기형 보링바의 진동해석)

  • Lee, Jae-Hyuk;Rim, Kyung-Hwa
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2000.06a
    • /
    • pp.1796-1802
    • /
    • 2000
  • The purpose of this work is to analyze the vibration characteristic of boring bar with dynamic vibration absorber and find out the effective design parameters. Using the finite element method and modified optimum design concept, conventional optimum design based on approximate lumped parameter model is checked and practical design to be measured with modal analysis is compared with optimum design from numerical analysis. Also, the performance of reducing vibration is investigated with variation of shape of boring bar. The considered model of boring bar with dynamic vibration absorber is selected among manufactured boring bars with the best performance.

  • PDF

Study of Active Damping Boring Bar Using Piezoelectric Actuator for Small Boring Process (압전 액추에이터를 이용한 소구경 능동 방진 보링바 기초연구)

  • Guo, Yang-Yang;Hong, Jun-Hee;Song, Doo-Sang
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.22 no.4
    • /
    • pp.658-664
    • /
    • 2013
  • In this paper, we present a case study of vibration suppression based on the application of active damping to the small boring process of a boring bar with diameter below ${\Phi}12$. The proposed active damping system consists of an acceleration sensor for real-time monitoring of the vibration signal, a driver for phase control in a computer program, and piezoelectric actuators for damping. In this system, the vibration signals are detected by the acceleration sensor and sent to the computer as an input. The phase shift parameter of the natural frequency of the input signal is sent to the data acquisition board in the computer and calculated by the phase control program. This study confirmed the effectiveness of this damping system, and it opens up the possibility of the development of active damping systems for small boring processes.