• Title/Summary/Keyword: 보강지반

Search Result 1,424, Processing Time 0.034 seconds

Identification of Dominant Cause of Cut-Slope Collapse and Monitoring of Reinforced Slope Behavior (개착사면의 붕락요인 분석 및 보강거동 계측)

  • Cho, Tae-Chin;Lee, Sang-Bae;Lee, Guen-Ho;Hwang, Taik-Jean;Kang, Pil-Gue;Won, Byung-Nam
    • Tunnel and Underground Space
    • /
    • v.21 no.1
    • /
    • pp.20-32
    • /
    • 2011
  • Failure aspects of cut-slope, which induce the sequential collapses during the excavation stage, have been analyzed. Slope rock structures are investigated by examining the orientations and positions of discontinuity planes calculated based on the BIPS image inside the boreholes. Drilled core log has been also used to identify the structural defects. Clay minerals of swelling potentials are detected through XRD analysis. Numerical analysis for slope stability has been performed by utilizing the joint shear strength acquired from the direct joint shear test. Cut-slope collapse characteristics have been studied by investigating the posture of failure-prawn joint planes and the stability of tetrahedral blocks of different sizes. Cross-section analysis has been also performed to analyze the cut-slope behavior and to estimate the amount of reinforcement required to secure the stability of cut-slope. Behavior of reinforced cut-slope is also investigated by analyzing the slope monitoring data.

The Evaluation for Pullout Performance of Steel Strip Reinforcements with Deformed-Bars as Transverse Members (지지부재로 이형철근을 설치하는 띠형 강보강재의 인발성능 평가)

  • Jung, Sung-Gyu;Kim, Juhyong;Cho, Samdeok;Lee, Kwangwu
    • Journal of the Korean Geosynthetics Society
    • /
    • v.12 no.4
    • /
    • pp.77-86
    • /
    • 2013
  • Laboratory pullout tests were conducted to evaluate pullout performance of steel strip reinforcements with deformed steel bars as transverse members. The steel strip reinforcement has an installation hole to assemble a deformed steel bar. Jumunjin standard sand is used to form a relative density of ground model to 80%. Frictional resistance of steel strip reinforcement without transverse member increases sharply at the initial displacement and quickly decreases with displacement. Maximum frictional resistance increases linearly as normal pressure increasing, and soil-reinforcement interaction friction angle(${\rho}_{peak}$) of a steel strip reinforcement is estimated to $14.64^{\circ}$. Passive resistance increases with displacement and converge into maximum passive resistance in most cases. Maximum passive resistance increases linearly as normal pressure increasing irrespective of shape of the steel reinforcement. Pullout force of steel strip reinforcements with installation holes or transverse members largely increases about 4 to 7 times compared to frictional resistance force of steel strip reinforcements when embedment length($L_e$) of steel strip reinforcements is 500 mm. In the case of using 2 transverse members, interference effect is observed due to the spacing of 2 transverse members and location of assembly holes and transverse members.

Slope Stability by Variation of Rainfall Characteristic for Long Period (장기간 강우특성 변화에 따른 국내 사면의 안정성)

  • Lee, Jeong-Ju;Kim, Jae-Hong;Hwang, Young-Cheol
    • Journal of the Korean Geotechnical Society
    • /
    • v.30 no.6
    • /
    • pp.51-59
    • /
    • 2014
  • Shallow landslides and debris flows are a common form of soil slope instability in South Korea. These events may be generally initiated as a result of intense rainfall or lengthening rainfall duration because of the effects of climate change. This paper presents the evaluation of rainfall-induced natural soil slope stability and reinforced soil slope instability under vertical load (railway or highway load) throughout South Korea based on quantitative analysis obtained from 58 sites rainfall observatories for 38 years. The slope stability was performed for infinite and geogrid-reinforced soil slopes by taking an average of maximum rainfall every ten years from 1973 to 2010. Seepage analysis is carried out on unsaturated soil slope using the maximum rainfall at each site, and then the factor of safety was calculated by coupled analysis using saturated and unsaturated strength parameters. The contour map of South Korea shows four stages in 10-year-time for the degree of landslide hazard. The safety factor map based on long term observational data will help prevent rainfall-induced soil slope instability for appropriate design of geotechnical structures regarding disaster protection.

Influences of Grouting Pressure of Microcement to Upper Structures (지반보강용 마이크로시멘트의 주입압이 상부구조물에 미치는 영향)

  • Hwang, Chul-Sung
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.14 no.4
    • /
    • pp.70-77
    • /
    • 2010
  • Microcement grouting and micro pile are frequently used for ground modification during tunnel construction. The influence of grouting pressure of microcement grouting and micro pile to the existing bridge which is directly over the constructing tunnel is investigated. Three dimensional seepage flow-structure interactive analysis considering firm water pressure with full stages of construction including the construction of upper bridge, microcement grouting, micro pile and tunnel is performed. The settlement and tilting of the pier of existing bridge violate the design code and the reaction of the bridge are highly increased after grouting. The stress of tunnel bracings such as rockbolt and shotcrete also exceed the limit of the code. The pressure of microcement grouting is confined by bedrock and transmit to the surrounded soil and the upper bridge. Microcement grouting needs mid-high pressure to penetrate through weak fault plane and the pressure greatly influence the safety of the upper structure. It is important to decide and care the grouting pressure to improve weak fault plane directly under the existing structures and the pressure of microcement grouting should be considered in underground analysis.

Case Study on the Countermeasure Methods and Collapsed Sources of Segmental Retaining Wall Considering Site Conditions (시공환경을 고려한 블록식 보강토옹벽의 붕괴요인 분석 및 대책방안 사례연구)

  • Han, Jung-Geun;Cho, Sam-Deok;Jeong, Sang-Seom;Lee, Kwang-Wo;Kim, Ji-Sun
    • Journal of the Korean Geosynthetics Society
    • /
    • v.4 no.3
    • /
    • pp.35-43
    • /
    • 2005
  • The geosynthetic reinforced segmental retaining walls(SRW) are improved that the disadvantage of existed retaining wall and the workability in field. Recently, the segmental retaining wall is replacing the exited wall because it is quickly advanced to using by the block in-situ. The use, therefore, is increasing. But, the trends of the large scaled construction was developed that the problems likely to crack and collapse, those are caused of careless in design and construction of SRW not considering about various surrounding conditions. In this study, the cause analysis on destructed SRW was carried out that based on the datum of measured displacement of walls, rainfall features and ground sounding conditions. Also, the analysis of the global slope stability was carried out on collapsed section and non-collapsed section using critical equilibrium method. For the rational stability and analysis of slope including SRW structure, the site conditions including situations of topography, ground and histories of construction and collapse etc should be considered. The rational countermeasure methods for non-collapsed and collapsed areas may be sustained as much as possible current state.

  • PDF

Design Standard and Improvement Proposal of Slope (국내외 비탈면 설계기준 및 개선방안(설계안전율 중심으로))

  • Yu, Byeong-Ok;Song, Pyeong-Hyeon
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2008.10a
    • /
    • pp.296-296
    • /
    • 2008
  • 국내 절토비탈면은 이상 기후 및 건설공사의 증대로 인해 증가하고 있는 추세이며 장마철 및 태풍으로 인해 비탈면의 붕괴로 많은 인명 및 재산피해가 발생되고 있는 실정이다. 국내에서 사용되고 있는 기존의 비탈면의 설계기준은 암반의 불연속면에 대한 조사를 실시하고는 있지만 주로 암반의 굴착난이도를 토층, 리핑암, 발파암으로 구분하여 각각의 비탈면 절취경사를 결정하여 사용하는 방법을 사용하였으며 이러한 기준은 단순히 암석의 강도를 기준으로 설정되어 있으므로 암석의 공학적 특성 즉, 암반내 불연속면 방향성, 연속성, 충진물질, 마찰각, 풍화속도 등의 영향으로 공용후 비탈면 구배의 재조정 및 보강이 빈번하다. 국내외 절토비탈면의 설계기준은 각 기관별로 산재되어 있었으며 비탈면에 대한 설계 및 시공 등에 관한 기준은 도로와 철도 설계기준에 일부 반영되어 있을 뿐 항만, 댐, 택지조성 등 기타 시설 설계기준에는 비탈면에 대한 기준이 마련되어 있지 않아 표준적인 비탈면 설계기준 및 유지관리지침이 등이 필요하였다. 이러한 문제점을 보완하기 위해 2004년부터 2006까지 한국시설안전공단, 한국도로공사, 대한주택공사가 협동으로 연구한 건설공사 비탈면 설계 시공 및 유지관리에 관한 연구의 결과로 2006년도에 "건설공사 비탈면 설계기준"이 수립되었다. 이 설계기준은 건설공사에서의 기존 상이한 기준들을 정리하고 동일화하는 작업을 수행하였으며 지반의 조사에서부터 대책공까지를 막나하여 정리하였다. 그러나 최근에 급격한 기후변화로 인한 비탈면붕괴 빈번함에 따라 과거 적용되어 왔던 이들 기준을 적용하는 경우, 특히 상부 토층 및 풍화암 구간에서 많은 설계안전율을 만족하지 못해 많은 보강을 수반해야 하는 문제가 발생되고 있어 그 원인에 대한 분석을 수행하고자 하였다. 2006년도 정리된 기준은 과거에 적용하여 온 유기시의 안전율 조건을 Fs > 1.1~1.2을 적용하였던 것을 Fs > 1.2로 통일하였으며 지하수위 조건은 지표면에 위치하도록 하였다. 지하수위 조건은 풍화암 및 토층의 경우, 과거 지표면에 -3m를 적용한 시기가 있었으나 지표면에 지하수위를 적용하는 것이 일반적인 해석방법이다. 이러한 결과의 원인을 검토해 보면 다음과 같다. 첫째, 풍화암 및 토층에 적용되어 온 지반강도 정수가 과거 적용한 값보다 최근에는 작아지는 경향을 보이고 있다. 둘째, 지하수위 적용문제로 현재 지표면에 지하수위를 두어 안전율을 감소시키는 문제로 이는 최근 들어 많은 연구기관에서 강우시 간극수압의 증가에 대한 연구가 활발하게 진행되고 있다. 그러나 침투수 해석은 현행 기준에도 강우의 침투를 고려한 해석을 실시하는 경우 FS > 1.3 적용하는 것으로 되어 있으나 대부분의 해석에서는 적용이 되지 못하고 있는 실정이다. 셋째, 안전율이 과거에 주로 적용된 Fs > 1.1에서 Fs > 1.2로 상향 조정되어 우기시의 설계안전율 만족시키지 못하는 문제이다. 그러므로 이러한 문제점을 개선하기 위한 검토가 필요하며 장기적으로 이에 대한 합리적인 기준을 개정하는 작업이 추후에 수행되어야 할 것으로 판단된다.

  • PDF

Development of Reinforcement Grout Materials Using Blast Furnace Slag Powder and Aramid Fiber (고로슬래그 미분말과 아라미드 섬유를 이용한 보강그라우트재 개발)

  • Seo, Hyeok;Park, Kyung-Ho;Kim, Chan-Jung;Kim, Ho-Chul;Kim, Daehyeon
    • Journal of the Korean Geosynthetics Society
    • /
    • v.18 no.1
    • /
    • pp.67-77
    • /
    • 2019
  • The grouting method is utilized to reinforce and waterproof poor grounds, enhance the bearing capacity of structures damaged resulting from settlement due to elevation and vibration or differential settlement, and for cutoff. The purpose of this research is to enhance the compressive strength of grout materials by using aramid fiber and develop a high-strength ground improvement method by using blast furnace slag powder. In this regard, this study has conducted a uniaxial compression test after checking the high charge (higher than 50%) of the ratio of blast furnace slag powder and cement at 100:0, 70:30 and 40:60%, adding the aramid mixture based on 0, 0.5 and 1.0% of the cement and furnace slag powder weight and creating sand gels based on surface oiling rate of 0.7 and 1.2%. For the environmental review evaluation, a heavy metal exudation test and a pH test measurement have been conducted. The experiment results showed that 1% increase of aramid fiber led to 1.3 times greater uniaxial compression intensity. As for the hexavalent chrome, a 30% increase in blast furnace slag powder led to approximately 50% decrease in heavy metal exudation. However, the pH test revealed that a 30% increase in blast furnace slag powder resulted in approximately 0.5 increase in pH. Further research on the pH part is needed in the future.

A Parametric Study for Jointed Rock Slope Using FEM (절리 암반사면에서의 인자효과에 의한 유한요소 해석의 타당성 검토)

  • Lee, Jin-A;Chung, Chang-Hee;Chun, Byung-Sik
    • Journal of the Korean Geotechnical Society
    • /
    • v.23 no.6
    • /
    • pp.97-102
    • /
    • 2007
  • Though the stability analysis of soil slopes widely employs the limit equilibrium method, the study on the jointed rock slopes must consider the direction of joint and the characteristics of Joint at the same time. This study analyzes the result of the change in the factors which show the characteristics of discontinuity and the shape factor of rock slopes, and so on, in an attempt to validate the propriety as to the interpretation of jointed rock slope stability which uses the general finite element program. First, the difference depending on the flow rules was compared, and the factor effect study was conducted. The selected independent variables included the direction of joint which displays the mechanical characteristics of discontinuity, adhesive cohesion, friction angle, the inclination and height of rock slope which reveal the shape of slope and surcharge load. And the horizontal displacement was numerically interpreted at the 1/3 point below the slope, a dependent variable, to compare the relative degree of factor effects. The findings of study on factor effects led to the validation that the result of horizontal displacement for each factor satisfied various engineering characteristics, making it possible to be applied to stability interpretation of jointed rock slope. A modelling is possible, which considers the application of the result of real geotechnical surveys & laboratory studies and the non-linear characteristics when designing the rock slope. In addition, the stress change which may result from the natural disaster, such as precipitation, and the construction, can be expressed. Furthermore, as the complicated rock condition and the ground supporting effect can be considered through FEM, it is considered to be very useful in making an engineering decision on the cut-slope, reinforcement and so on.

Determining of Ground Condition Criteria for Dam Reinforced RIM Grouting (댐체 강화 RIM부 그라우팅을 위한 지반상태 기준 결정)

  • Han, Kiseung;Lee, Donghyuk;Park, Duhee
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.42 no.2
    • /
    • pp.181-186
    • /
    • 2022
  • Dam slope RIM is a highly important contact interface where the main body and the base surface are connected. In general, when the grouting for the slope of the dam structure is designed, it is planned using limited data (drilling, geological map, etc.). This makes it very difficult to accurately consider the original ground characteristics of the slope RIM grouting target, In addition, when the grouting volume planned during the design is drilled and injected into the original ground where the waterstop is secured, there is a possibility that the original ground with the waterstop is disturbed and the effect of the waterstop is rather diminished. In order to overcome such problems, it is more suitable to first consider geological conditions and determine whether to perform optimal grouting on the original ground through on-site repair tests before performing RIM grouting. In this paper, to determine the grouting of the RIM unit, a pilot hole water pressure test was performed on the rock of the slope in the target section. The analysis shows grouting volume of 1 Lugeon or less, and the cement injection amount also shows the injection result of 1 kg/m or less. In this case, performing grouting is rather counterproductive. This result can be evaluated through a rock of which some degree of order of mass is secured, as it is a dam design standard of 1 Lugeon or less when analyzed, using the results of visual observation and geological map creation during slope cutting. Therefore, in conclusion, it is preferable to make the decision for using RIM grouting on the slope of the dam body structure, based on 1 Lugeon in a rock state, and the cement injection amount also at 1 kg/m.

Development of Composite Geo-Material for Recycling Dredged Soil and Bottom Ash (준설토와 Bottom Ash 재활용을 위한 복합지반재료 개발)

  • Kim, Yun-Tae;Han, Woo-Jong;Jung, Du-Hwoe
    • Journal of the Korean Geotechnical Society
    • /
    • v.23 no.11
    • /
    • pp.77-85
    • /
    • 2007
  • This paper investigates the mechanical characteristics of composite geo-material which was developed to reuse both dredged soils and bottom ash. The composite geo-material used in this experiment consists of dredged soil taken from the construction site of Busan New Port, cement, air foam and bottom ash. Bottom ash is a by-product generated at the Samcheonpo thermal power plant. Several series of laboratory tests were performed to investigate behavior characteristics of composite gee-material, in particular the reinforcing effect by mixing bottom ash. The experimental results of composite geo-material indicated that the stress-strain relationship and the unconfined compressive strength are strongly influenced by mixing conditions. Especially it was observed that the compressive strength of composite geo-material increased with an increase in bottom ash content due to reinforcing effect by the bottom ash. Compressive strength of composite geo-material increased with the increase in curing time. The 28-day strength of composite geo-material is $1.7{\sim}1.8$ times higher than the 7-day strength. The moist unit weight strongly depended on air-foam content as well as bottom ash content added to the composite goo-material. In composite geo-material, secant modulus ($E_{50}$) also increased as its compressive strength increased due to the inclusion of bottom ash.