• 제목/요약/키워드: 보강지반

Search Result 1,424, Processing Time 0.04 seconds

An Analysis Model of the Secondary Tunnel Lining Considering Ground-Primary Support-Secondary Lining Interaction (지반-1차지보재-2차라이닝의 상호작용을 고려한 터널 2차라이닝 해석모델)

  • 서성호;장석부;이상덕
    • Tunnel and Underground Space
    • /
    • v.12 no.2
    • /
    • pp.107-114
    • /
    • 2002
  • It is the common practice to over design the reinforcement for the secondary tunnel lining due to the lack of rational insight into the ground loosening loads. and due to the conservative application of the empirical design methods. The main loads of the secondary lining are the ground Loosening loads and the ground water pressure, and the ground load is critical in the reinforcement design of the secondary lining in the case of drained tunnel. If the external load is absent around a tunnel, the reasons of the load far secondary tunnel lining are the deterioration of the primary supports such as shotcrete, steel rib, and rockbolts. Accordingly, the analysis method considering the ground-primary supports-secondary lining interaction should be required tar the rational design of the secondary tunnel lining. In this paper, the interaction was conceptually described by the simple mass-spring model and the load transfer from the ground and primary supports to the secondary lining is showed by the ground-primary supports-secondary lining reaction curves fur the theoretical solution of a circular tunnel. And also, the application of this proposed model to numerical analysis is verified in order to check the potential far the tunnel with the complex analysis conditions.

The Immediate Settlement Estimation of the Improved Soft Ground Using Bamboo Mats (대나무매트로 보강된 연약지반의 즉시침하량 추정에 관한 고찰)

  • Kim, Woo-Jin;Kim, Yoon-Ha;Kang, Jin-Tae;Choi, Yong-Hwan;Kim, Jong-Ryeol
    • Journal of the Korean Geotechnical Society
    • /
    • v.24 no.5
    • /
    • pp.55-64
    • /
    • 2008
  • When the structure is constructed on the soft ground, the embankment is settleed into the soft ground. At this time, the settlement of the structure is needed to predict. We are using bamboo mats construction only as a way of test construction. Under this circumstance, using the equation of Janbu and Perloff, we calculated the settlement, and analyzed the problem, suggesting proper theoretical equations showing the settlement of soft ground using bamboo mat. Using this equations the settlement was calculated and compared with the result of FEM. The result of the application was very close to the numerical value and the trend of theoretical equations. Using the existing equations, the settlement in Janbu's and Perloff's methods were calculated to be 40% of the actual settlement.

A Comparison Between the Ballast Replacement Method & Geosynthetics-Reinforced Method for Restraint of Mud Pumping in Service Line (영업선상에서 분니 억제를 위한 자갈치환 공법과 토목섬유 보강공법 비교연구)

  • Choi, Chan-Yong;Lee, Jin-Wook;Kim, Dae-Sang
    • Journal of the Korean Geosynthetics Society
    • /
    • v.6 no.4
    • /
    • pp.21-28
    • /
    • 2007
  • 3 years visual inspection has been performed on the railway lines where ballast replacement or geosynthetics-reinforcement had been used to restrain the mud pumping. The result indicates that geosynthetics-reinforcement is more effective than ballast replacement for the long-term mud pumping. In addition, the non-woven geotextile to be used for mud pumping restraint is effective when its weight is $330N/m^2$ or above. Furthermore, the lateral tensile strain under ballast on which wheel load applies ranges from 0.016 to 0.1211% and it's 10 times larger than the lateral tensile strain which ranges from 0.0078 to 0.0385%.

  • PDF

Experimental Study on Development for Separation and Reinforcement Geotextiles with Horizontal Wicking Drain Property (수평방향의 위킹 배수 특성을 지닌 분리·보강용 지오텍스타일 개발을 위한 실험적 연구)

  • Kim, Hong-Kwan;Ahn, Min-Soo
    • Journal of the Korean Geosynthetics Society
    • /
    • v.18 no.4
    • /
    • pp.215-224
    • /
    • 2019
  • According to the recent civil engineering construction work site which is a complex process, development of multi-functional geotextiles is required. In this study, the characteristics of five different modified cross-section fiber yarns for the selection of wicking yarns were analyzed and yarns that can achieve target properties were selected. Experimental prototype geotextiles suitable for horizontal wicking drain property and reinforcement was developed and its tensile strength, 2% secant modulus, vertical water permeability, AOS, friction characteristics by the direct shear method, and vertical/horizontal wicking test were analyzed. These tests are conducted to verify the performance of the geotextiles with horizontal wick drain property, separation and reinforcement developed in this study. As a results of the indoor soil box test, it was confirmed that the geotextiles using the wicking yarn sufficiently exhibited the function of discharging excess pore water in the horizontal direction.

Long-Term Performance of Full-Scale Tiered Geogrid Reinforced Wall under Sustained Load (실대형 계단식 보강토 옹벽의 지속 하중하에서의 장기변형 거동 특성)

  • Yoo, Chung-Sik;Jung, Hye-Young;Lee, Bong-Won
    • Journal of the Korean Geosynthetics Society
    • /
    • v.4 no.2
    • /
    • pp.29-38
    • /
    • 2005
  • It is essential to take consideration of long-term deformation characteristics of mechanically stabilized earth wall user sustained and repeated loads for design and construction, especially for use as part of permanent structures. This paper presents the long-term performance of a full-scale geogrid reinforced segmental retaining wall results based on the measured strains in geogrids for three years. The results indicate that the reinforcement tensile strains tend to continuously increase after wall completion with the increase being more pronounced in the reinforcement layers in the lower tier. It can be concluded that the long-term deformation should be taken in account for walls constructed as part of permanent structures for which wall deformation should be controlled.

  • PDF

Numerical Analysis on the Crack Control of Concrete Lining Reinforced by Composite Fibers (복합섬유보강 콘크리트 라이닝 부재의 균열제어를 위한 수치해석적 연구)

  • Yang, Woo-Shik
    • Journal of the Korean Geosynthetics Society
    • /
    • v.9 no.2
    • /
    • pp.41-50
    • /
    • 2010
  • The concrete lining of a tunnel constructed by NATM used to be regarded as facing material which does not support any load from the surrounding ground. But the recent appraisal of the decrepit tunnels revealed that rockbolts and shotcrete deteriorate with time resulting in loss of supporting capability. Consequently, concrete lining has to support part of the load which used to be supported by rockbolts and shotcrete, and thus should be regarded as the final supporting structure in a tunnel. One of the common, and perhaps the most serious problem in concrete lining is the longitudinal cracks taking place at the tunnel crown. The longitudinal cracks, mostly related to the construction procedures, can be developed by many reasons such as the lack of thickness, wrong materials, bad curing environment, and excessive external forces. Many efforts has been made to control and suppress these cracks but efficient and economic way is yet to be found. For efficient crack control in concrete lining, reinforcement by composite fibers, which is the mixture of steel fiber and nylon fiber, is suggested in this study.

  • PDF

A study on the reduction of concrete lining re-bar according to the tunnel design factors (터널 설계인자 평가에 따른 콘크리트 라이닝 철근량 절감에 관한 연구)

  • Kang, Si-On;Lim, Young-Duck;Shin, Jeong-Ho;Kim, Sang-Hwan
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.20 no.1
    • /
    • pp.197-209
    • /
    • 2018
  • This paper presents a study on the reduction of concrete lining re-bar according to the tunnel design factors. The design of the concrete lining increases the reinforcing re-bar according to the application of excessive load, and the economical efficiency is reduced. In order to improve the economical efficiency of tunnel construction, rational standards are required for the design factors of concrete lining. Therefore, this research analyzed the characteristics and problems of the design factors applied to the design of concrete lining. Also, the economical review of the concrete lining for design factor application was compared with the amount of reinforcing re-bar calculated from the section design using numerical analysis. The results show that the amount of re-bar is varied according to the design factors. That is, the required amount for re-bar in the tunnel concrete lining could be reduced in the design stage. The results of this study may be useful for economic design of concrete lining in the future.

Pullout Characteristics of Geogrid with Attached Passive Reinforcement (마찰돌기를 부착한 지오그리드의 인발특성 평가)

  • Moon, Hongduk;Yoo, Chulho
    • Journal of the Korean GEO-environmental Society
    • /
    • v.15 no.11
    • /
    • pp.43-51
    • /
    • 2014
  • In this study, a series of pullout experiments were conducted on geogrid with attached passive reinforcement with respect to silt containments. Experiments were performed on man-made sand ground containing different silt of 0 %, 17 %, 35 % under various normal stresses 30 kPa, 60 kPa, 120 kPa respectively. The pullout test results showed that passive reinforcement increased the pullout strength over all silt contained condition and showed up to 20 % increases for same soil condition. The test results converted to the coefficient of interaction of pullout test to investigate the effect of reinforcement and the case of passive reinforcement showed 0.7~1.6 distribution depend on a silt contents. Therefore it is concluded that the overall length of geogrid can be reduced under the low vertical stress conditions.

A Study on the Stability Estimation Procedure for Reinforced Pillar of Twin Tunnel (병설터널 보강 필라의 안정성 평가방법에 관한 연구)

  • Baek, Seungcheol;Jang, Busik;Lee, Taegyu;Lee, Sungmin;Hwang, Jungsoon
    • Journal of the Korean GEO-environmental Society
    • /
    • v.10 no.7
    • /
    • pp.81-91
    • /
    • 2009
  • Recently, twin-tunnel is often designed in the aspects of disaster prevention and economical reasons. However, the design cases and the studies are relatively insufficient. By the twin-tunnel excavation, deviate stresses of pillar between tunnels are increased and the increased stresses induce the instability of the twin-tunnel. In this study, numerical analyses about the twin-tunnel behaviour were conducted with varying ground strength, width of pillar and depth of earth cover and a series of regression analyses were carried out by using the results of numerical analyses for the twin-tunnel. Based on the numerical analyses, an estimation method of derived stresses is suggested through the regression analyses. Also, based on the results of regression analyses, an quantitative estimation method considering the reinforcement effects is also suggested. Then various parametric studies were conducted to be considered the reinforcement type and various design parameters. Finally, the efficiency of the suggested method based on the Hoek-Brown Failure Criterion is verified through the results of parametric studies.

  • PDF

Pullout Resistance of Geosynthetic Strip with Rounded Band Anchor (수동저항부가 형성된 띠형 섬유보강재의 인발저항 특성)

  • Lee, Kwang-Wu;Cho, Sam-Deok;Han, Jung-Geun;Hong, Ki-Kwon
    • Journal of the Korean Geosynthetics Society
    • /
    • v.10 no.3
    • /
    • pp.43-51
    • /
    • 2011
  • This paper describes the results of pullout tests in the laboratory, which are conducted to assess the pullout performance of recently developed geosynthetic strip reinforcement with rounded band anchor. The geosynthetic strip can be used as reinforcements in reinforced soil wall with concrete block facing. The pullout resistance of the geosynthetic strip with rounded band anchor is mobilized by the combination of the interface friction between soil-reinforcement surface and the passive soil resistance caused by the rounded band anchor. Therefore, both the friction resistance and the passive resistance have to be considered in design. From the pullout test results, when the rounded band anchor are formed in the end part of the geosynthetic strip, pullout strength increases about from 10% to 65%. The passive resistance can be evaluated based on the pullout test results.