• Title/Summary/Keyword: 보강지반

Search Result 1,424, Processing Time 0.026 seconds

Effect of Non-Woven Geotextile Reinforcement on Mechanical Behavior of Sand (모래의 역학적 거동에 미치는 부직포 보강재의 효과)

  • Kim, You-Seong;Oh, Su-Whan;Cho, Dae-Seong
    • Journal of the Korean Geosynthetics Society
    • /
    • v.9 no.4
    • /
    • pp.39-45
    • /
    • 2010
  • The effects of non-woven geotextiles on mechanical behavior of sand were investigated. A comprehensive series of triaxial compression tests were performed for these investigation on unreinforced and reinforced sand with geotextiles. The Joomunjin standard sand was used and non-woven geotextiles were included into sand specimen with three layers. The inclusion of non-woven geotextile reinforcement into sand increased the peak strength of sand significantly and the reinforced samples exhibited a greater axial strain at failure. Also the effect on number of reinforcement layers was studied and found as increasing the number of reinforcement layers resulting in more ductility by clogging developed in the shear band within the specimens. It was also found that the tendency of samples to dilate is restricted by non-woven geotextile inclusion. The effect of nunber of reinforcement layer increasing is just same to the effect of decreasing void ratio of sand in this case.

  • PDF

The Comparative Experiment of Geogrid Reinforcement Types with Construction Stage on Segmental Retaining Walls (블록식 보강토 옹벽에서의 시공단계별 보강재 타입에 따른 거동비교)

  • Lee, Sung-Hyouk;Lee, Jin-Wook;Choi, Chan-Yong
    • Journal of the Korean Geosynthetics Society
    • /
    • v.11 no.4
    • /
    • pp.1-8
    • /
    • 2012
  • In this study, the earth pressure, displacement and strain were compared with reinforcement types at segmental retaining wall through full scale model test. The test results found that the measurement of earth pressure and displacement at wall for the fully reinforced retaining wall are different from those for the partly reinforced retaining wall. The analyses of these results would suggest that the used of geoogrid allowed the vertical earth pressure and displacement at wall to be reduced. The horizontal earth pressure in upper and lower part of wall can change with reinforcement type and earth deformation and were larger than the active and the rest pressure. Also, the lateral earth pressure and displacement of wall have a very high a correlation. It was found that the strain contour distribution of reinforcements was occurred a large strain at cental part of wall in segmental retaining wall system.

Estimation of Reinforcement Effect of Superannuated Fill Dam Repaired by the Permeable Grouting Method (침투그라우팅이 시공된 노후필댐의 보수보강효과 평가)

  • Kim, Yungjin;Heo, Yol;Oh, Byunghyun
    • Journal of the Korean GEO-environmental Society
    • /
    • v.8 no.6
    • /
    • pp.45-52
    • /
    • 2007
  • Maintenance of structural and hydrological safety of the superannuated fill dam is very important subject on the viewpoint of disaster prevention. Mainly, the core of the superannuated fill dams have been damaged continuously by the various harmful external forces such as the typhoons, flash floods and earthquake, and these can be connected to the large scaled general dam failure. Therefore, the research on the repair, remediation and reinforcement of dam is necessary. In this study, the permeable grouting method for the remediation of fill dam was examined by the electrical resistivity survey and the change of permeability of core front. As a result, the permeable grouting method can be useful remediation method for the superannuated fill dam, the leakage from the core front decreased greatly before and after the construction of grouting. Furthermore, it can be said that the turbidity of fill dam may not be greatly increased by grouting.

  • PDF

Bulging of Reinforced Retaining Walls (보강토옹벽의 배부름에 관한 실험적 연구)

  • Ju, Jae-Woo;Park, Jong-Beom;Na, Hyun-Ho
    • Journal of the Korean Geosynthetics Society
    • /
    • v.10 no.2
    • /
    • pp.45-53
    • /
    • 2011
  • Recently reinforced retaining walls secure their position as a stabilized method of construction replacing concrete retaining walls gradually. However, in the event of using extensible reinforcement, a bulging phenomenon can be happened in the front of reinforced retaining walls. Bulging of reinforced retaining walls means a phenomenon that, in the height of an arbitrary block, the upper part and the lower part of the block don't secure a relative position in design. Therefore, it is judged that it has the necessity to be examined in design since reinforcement needs metamorphosis to some degree to display tensile force. Therefore, the study examined about how extensibility of reinforcement had an effect on movement of reinforced retaining walls through a small-scale model test with aluminum rods. The study used Changhoji(traditional korean paper made from mulberry bark) as inextensible reinforcement and membrane as extensible reinforcement. As the result of the test, rigidity of reinforcement had a lot of effects on displacement of reinforced retaining walls and generally occurrence point of the maximum horizontal displacement had a tendency transferring to the upper part of walls according to rigidity of reinforcement was increased.

Strength and Deformation Characteristics of Geosynthetics-Reinforced Slag Materials (토목섬유로 보강된 슬래그 재료의 전단강도 및 변형 특성)

  • Shin, Dong-Hoon;Lee, Jong-Seok
    • Journal of the Korean Geosynthetics Society
    • /
    • v.8 no.4
    • /
    • pp.27-34
    • /
    • 2009
  • In this paper, characteristics of shear strength and deformation of geosynthetics-reinforced slag materials are described. In order to investigate the effect of geosynthetics on shear strength and deformation behavior of slags, when they are reinforced with geosynthetics or geomat such as PET mat, large triaxial tests were performed under consolidated-drained condition. The materials used in the study are real ones as they are in the field, so that the scale effect of samples disappeared. From the large triaxial tests, it was observed that the stress-strain relationship of geosynthetics-reinforced slags shows relatively small dilatancy and weak tendency of strain hardening, compared with that of slags without reinforcement. The shear strength parameters such as apparent cohesion and internal friction angle increase with PET mat reinforcement, consequently result in about 1.2 (for low confining pressure) to 1.4 (for high confining pressure) times of shear strength of un-reinforced sample. Therefore, the adoption of geomat-reinforced slag layers leads to an increase in the factor of safety for embankment design on soft soil formations.

  • PDF

A Study on the Deformation Behavior of Nonwoven Geotextiles Reinforced Soil Walls Based on Literature Reviews (문헌조사에 근거한 부직포 보강토옹벽의 거동에 관한 연구)

  • Won, Myoung-Soo;Kim, Tae-Wan;Roh, Jae-Kune;Kim, Hyoung-Wan
    • Journal of the Korean Geosynthetics Society
    • /
    • v.9 no.1
    • /
    • pp.21-30
    • /
    • 2010
  • To understand the deformation behavior of nonwoven geotextiles(NWGT) reinforced soil wall, analyses of load-elongation properties, soil-reinforcement interface friction, laboratory model tests, and field cases throughout literature reviews are being studied in this paper. According to the analyses results, the stiffness and tensile strength of NWGT is increased in proportion to confinement pressures, and the interface shear strength at soil-NWGT appeared to be stronger than soil-geogrid interface. The deformation at the beginning of loading on NWGT reinforced soil wall is larger than geogrid reinforced soil wall, but the wall deformation with NWGT is smaller than the wall of geogrid after passing some loading point in laboratory model tests. Case analysis results have shown that the facing of NWGT reinforced soil wall should be rigid enough to be used as a permanent wall, and NWGT and in-situ poor soil can be used for reinforcement and backfill respectively if the wall is constructed as pre-reinforced soil body and with post-facing that has a full-height rigid concrete.

  • PDF

The Influence of Initial Stress Ratio on the Stress~Strain Characteristics of Geosynthetics Reinforced Clayey Soil (토목섬유 보강점성토의 응력~변형특성에 미치는 초기응력비의 영향)

  • 이재열;이광준;김유성
    • Journal of the Korean Geotechnical Society
    • /
    • v.18 no.5
    • /
    • pp.169-178
    • /
    • 2002
  • The stress~strain characteristics of geosynthetics reinforced clayey soil were investigated by triaxial compression tests. All the tests were peformed either on unreinforced or reinforced soils under fully drained condition after having been consolidated isotropically or anisotropically to the required level of effective stresses by the small increment of 0.05kgf/$cm^2$. The anisotropically consolidated drained tests were performed to simulate the in-situ condition of reinforced soil structures such as reinforced soil wall, abutment and embankment which are generally in the anisotrpic state. From a series of tests it was ffund that the behavior of the anisotropically consolidated reinforced clayey soils was very different from stress~strain characteristics of consolidated reinferced clayey soils. It was found especially that the initial Young's moduli of anisotropically consolidated reinforced clayey soils were higher than those of isotropically consolidated reinforced clayey soils. It was found also that the reinforcement effect in anisotropically consolidated reinforced soils developed at a much lower level of axial strain(0.01%) compared with isotropically consolidated ones(about 1.0~5.0%).

Stability Analysis of Geocell Reinforced Slope During Rainfall (강우 시 지오셀 보강 사면의 안정성 평가에 관한 연구)

  • Shin, Eun-Chul;Kim, Jang-Ill
    • Journal of the Korean Geosynthetics Society
    • /
    • v.16 no.4
    • /
    • pp.33-41
    • /
    • 2017
  • In this study, the increment effect of safety factor according to increasing of horizontal permeability coefficient is analyzed when geocell is installed on the slope for protection. To evaluate the horizontal permeability and reinforcement effect, the laboratory tests such horizontal permeability test were conducted. According to the laboratory test results, as the porosity rate of geocell increases, the coefficient of horizontal permeability is also increased. And also, regardless of the different types of filled materials, the coefficient of horizontal permeability is improved in a geocell reinforced ground compare with the non-reinforced ground. Laboratory test results and the rainfall intensity were applied to the numerical modeling of slope for seepage analysis and stability analysis of slope by using Soilworks, numerical analysis program. As a result of the slope stability analysis, it is confirmed that the installed geocell on the slope facilitates the drainage of water on the surface of slope. Hence, the ground water elevation is suppressed. Therefore, the safety factor of the slope is increased by the increasing of the internal friction angle, apparent cohesion, and coefficient of horizontal permeability by reinforcing the slope with geocell.

Numerical Analysis on the Behavior of a Slope with Upward Drainable Soil Nails during Rainfall (수치해석을 통한 상향식 배수겸용 쏘일네일링에 대한 강우모형사면 거동 연구)

  • Kim, Young-Nam;Lee, Choul-Kyu;Lee, Kang-Il
    • Journal of the Korean Geosynthetics Society
    • /
    • v.13 no.1
    • /
    • pp.11-22
    • /
    • 2014
  • In this study, numerical analyses and model tests were conducted to figure out the behavior of a slope reinforced by upward drainable soil nails during rainfall. The model tests were carried out on both reinforced and unreinforced slopes. To verify the results of the tests, seepage analyses were performed and compared with the test results using a commercial program, SEEP/W. The results showed that the numerical analyses have in overall a good agreement with the experiments in the variations of ground water level and pore water pressure even though there is some time delay for the experiment before the changes in the ground water level and pore water pressure after rainfall are observed, while the numerical analyses not.

Seepage-induced Face Stability of n Tunnel with Steel Pipe-reinforced Multistep Grouting (강관 다단 그라우팅으로 보강된 터널의 침투수력을 고려한 막장 안정성 검토)

  • 이인모;이재성;남석우;이형주
    • Journal of the Korean Geotechnical Society
    • /
    • v.19 no.4
    • /
    • pp.121-131
    • /
    • 2003
  • Tunneling in difficult geological conditions is often inevitable especially in urban areas. Ground improvement and reinforcement techniques are often required to guarantee safe tunnel excavations and/or to prevent damage to adjacent structures. The steel pipe-reinforced multistep grouting method has been recently applied to tunnel sites in Korea as an auxiliary technique. In this study, the face stability with steel pipe-reinforced multistep grouting was evaluated emphasizing the effect of seepage forces. The study revealed that the influence of the steel pipe-reinforced multistep grouting on the support pressure in dry condition is not significant while there is relatively a large amount of reduction in seepage forces by adopting the technique in saturated condition. The effect of the anisotropy of permeability on the seepage force acting on the tunnel face was also estimated by conducting the coupled analysis. It was found that a higher horizontal permeability compared with the vertical one causes reduction in the seepage farce acting on the tunnel face.